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GENERAL INTRODUCTION 

 

The synthesis of biologically active natural products has been used for the discovery 

of new drugs. Organic synthesis is designed for a target molecule like a novel compound by 

selecting optimal reactions from optimal starting materials.  Each reaction and each step of a 

synthesis should give a good yield for the product with little work.   

In this thesis, we explored both total synthesis and methodology of several natural 

products and analogs, especially heteroaromatic natural compounds. Chapter 1 describes an 

efficient synthesis of 2-substituted and 2,3-disubstituted indoles via a two-step approach in 

one pot involving a six-electron ring closure.  Chapter 2 describes the direct synthesis of 

neocryptolepine in four steps in two pots. Chapter 3 is about synthesis studies towards the 

unique κ opioid receptor agonist salvinorin A. Chapter 4 describes a direct approach to the 

synthesis of methyllycaconitine, one of the diterpenoid alkaloids.  
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CHAPTER 1. A FLEXIBLE SYNTHESIS OF 2-SUBSTITUTED AND 2,3-

DISUBSTITUTED INDOLES FROM AMINOBENZYL PHOSPHONIUM SALTS 

  

Introduction 

Although a number of versatile indole syntheses have been reported, the development 

of new methods for the synthesis of indoles remains an active area of research.
1
  This is in 

part due to the continual emergence of novel biologically active indole-containing natural 

products, such as the recently discovered indoles 1-3 and also due to the development of 

useful synthetic pharmaceuticals bearing the indole subunit (Figure 1).
2
  Compound 1 

exhibits potent immunomodulatory and cytotoxic activity.
3
 Indole 2 was active against 

methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus 

faecium.
4
  Compound 3 shows settlement inhibition of barnacle larvae (Balanus improVisus) 

with an EC50 value of 15 nM.
5
  

  

Figure 1 

 

 

Many widely used indole syntheses have the retrosynthetic analysis represented by 

disconnection A (Scheme 1).  These reactions include the Fischer indole synthesis,
6
 the Japp-
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Klingemann route,
7
 the Gassman indole synthesis,

8
 the Sugasawa indole synthesis, and the 

Bischler indole
9
 synthesis.  When G is a bromide or iodide, this is the starting material for 

several organopalladium-mediated synthetic routes to indoles.
10

   

In contrast, relatively few indole syntheses are represented by disconnection B.  

Several groups have reported a reductive cyclization of ortho-ketoamides.
11, 12

  The 

Madelung reaction involves cyclization of the dianion of an anilide at elevated temperature.
13

  

Various cyclizations using intramolecular Claisen condensations and Wittig reactions have 

been reported.
14

  Two groups have employed radical-mediated conjugate additions.
15, 16

   

 

Scheme 1 

 

 

Despite the fact that these reactions are synthetically useful, they suffer from several 

disadvantages: (i) high temperatures and long times (above 125 °C and 12 h), (ii) expensive 

transition-metal catalysts, (iii) multistep and moderate yields, as well as high sensitivity to 

moisture. We report herein a new approach that can successfully afford 2-substituted and 2,3-

disubstituted indoles in high yields in one pot under very mild conditions. 

Results and Discussion  

In an approach to the indoloquinoline alkaloids, we condensed commercially 

available phosphonium salt 4 with isatin 5 to form imine 6 under the conditions shown in   
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Scheme 2. Treatment of imine 6 with potassium tert-butoxide in either THF or toluene 

provided adduct 7 in around 21% yield. 

 

Scheme 2 

 

 

Although we had expected the product to be compound 8, an intermediate in the 

synthesis of cryptolepine,
17

 our proton and carbon NMR spectra did not match the published 

spectra.
18

 After considering its mass spectrum (which showed the mass of 8 plus an oxygen 

atom) and the 
13

C NMR spectrum (which showed a resonance at 99 ppm as the most 

downfield resonance), we tentatively assigned the product structure 7. Compound 7 had been 

reported
19

 and its major mass spectral fragmentation patterns were identical to those of our 

adduct.  

We reasoned that if a spiro compound, such as 7, had formed, such an intermediate 

might be employed in a general synthesis of 2-substituted indoles. Since these compounds 

are intermediates for the synthesis of indole natural products, a one-pot synthesis from 
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commercially available starting materials would be useful. The strategy for the formation of 

the 2-substituted indoles 13 from 4 via 10 and 11 is illustrated in Scheme 3. 

 

Scheme 3 

 

 

Initial studies were aimed at finding the optimal reaction conditions for the acid-

catalyzed imine formation from the aniline and aromatic aldehydes. Our investigation began 

with the reaction of phosphonium salt 4 and benzaldehyde (Table 1). The reaction was first 

attempted using 1 equivalent of phosphonium salt 4, 1 equivalent of benzaldehyde and acetic 

acid (0.4 equivalent) as the catalyst in boiling solvents. The best conditions are shown in 

entry 5, which involves boiling methanol for 12 h. This provided almost a quantitative yield 

of the desired imine according to 
1
H NMR spectroscopy. The imine was not isolated, but was 

immediately dissolved in THF and treated with 1.6 equivalents of potassium tert-butoxide. 

The second step in the process involves a six-electron electrocyclic ring closure. This step is 

facile even at -78 
o
C and efficiently generated the desired 2-phenyl indole (14a) in 96% 



www.manaraa.com

6 

 

isolated yield after one hour at ambient temperature. The solvent has to be THF, because 

methanol reacts with the imine intermediate.  

 

Table 1. Reaction conditions for 2-substituted indole formation 

 

entry solvent 1 temp. 1 

(
o
C) 

time 1 

(h) 

solvent 2 temp. 2 

(
o
C) 

time 2 

(h) 

yield (%) 

1 toluene 110 12 toluene 25 5 25 

2 THF 65 12 THF 25 5 23 

3 methanol 65 12 methanol 25 5 complex 

4 methanol 65 12 THF -78→25 8 95 

5 methanol 65 12 THF 25 1 96
a
 

6 methanol 65 10 min THF 25 1 73 

7 methanol 80 10 min THF 25 1 95
b
 

a 
Reaction conditions: 2-aminobenzyl phosphonium salt (0.5 mmol), benzaldehyde (0.5 mmol), AcOH (0.4 

mmol), t-BuOK (1.4 mmol), solvent (3 mL). 
b 
Microwave assisted 

 

Microwave-assisted organic synthesis is an efficient method for the synthesis of 

heterocyclic compounds.
20,21

 As opposed to conventional heating, the application of 

microwave energy has the major advantage of shorter reaction times, because of the rapid 

core heating associated with microwaves.  Therefore, microwave reactions frequently exhibit 

cleaner product profiles and use minimal quantities of solvent. Many reviews have been 

published that give more detail about this new application.
22

 This prompted us to synthesize 

imines under microwave conditions. The conditions we applied in a CEM microwave oven 
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were similar to the conventional procedure. The phosphonium salt 4 and benzaldehyde with a 

catalytic amount of acetic acid were dissolved in methanol and heated in a sealable tube to 80 

o
C, compared to 65 

o
C under the conventional conditions (entry 7, Table 1).  As expected, the 

reaction time was reduced dramatically. The imine formation that took 12 hours by 

conventional heating was speeded up to 10 minutes.  After the base-mediated step, we 

obtained the 2-phenylindole (14a) in 95 % yield. The mild reaction conditions, as well as the 

high yield of this reaction, encouraged us to extend this methodology to a range of aldehydes. 

In view of this promising result, several aromatic and α, β-unsaturated aldehydes 

were reacted with 4. The results of these experiments are collected in Table 2. As the results 

in Table 2 indicate, a wide range of functionalized aldehydes react effectively with 

phosphonium salt 4, including a variety of electron-donating and electron-withdrawing 

substituents, such as aromatic ethers, halides, nitro and aryl groups (entries 2-5), and also 

heterocyclic aldehydes (entries 6 and 7). In addition, reactions with α,β-unsaturated 

aldehydes (entries 8 and 9) also proceeded very smoothly and gave high yields under these 

conditions.  
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Table 2. Reaction of 1 with aldehydes to generate 2-aryl and 2-vinylic indoles
a
 

 

 

entry aldehydes 9 product 
yield

b
 

(%) 

melting point 

(°C) 

(Lit. mp) 

1 
  

14a 95 
188-190 

(188-189)
10l

 

2 
  

14b 95 
211-213 

(208-212)
10l

 

3 
 

 

14c 81 
82.5-83 

(83)
23a

 

4 
  

14d 86 
248-250 

(249-251)
23b

 

5 

  

14e 93 
97-99 

(99-102)
10l

 

6 
  

14f 86 120-123 

7 
  

14g 85 
175-176 

(170-175)
23c

 

8 
 

 

14h 97 
202-204 

(197-199)
23d

 

9 

  
14i 83 164-165 

10 

  

14j 87 
202-203 

(199-202)
24b

 

a
 Reaction conditions: (i) phosphonium salt 4 (1 mmol), aldehyde (1 mmol), AcOH (0.4 eq.), 

methanol (2 mL), (ii) t-BuOK (1.6 eq.), THF (2 mL).
b
 Isolated yield. 
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With all these successful results for 2-substituted indoles, we wished to expand this 

electrophilic cyclization strategy as a practical and convenient synthetic method for the 

synthesis of 2,3-disubstituted indoles.  

Initially, we synthesized a set of phosphonium salts 15a-c bearing substituents on the 

benzylic carbon (Scheme 4).  Successful reactions of these phosphonium salts would provide 

a useful synthesis of 2,3-disubstituted indoles.  Phosphonium salts 15a, 15b and 15c were 

readily prepared by reduction of the commercially available aromatic ketones, followed by 

treatment of the resulting amino alcohols with 1 equivalent of triphenylphosphine 

hydrobromide.  The functional group R1 will be at the indole 3-position after the ring closure.  

Compound 15a will be the precursor for 2,3-disubstituted indoles with an aryl group in the 3-

position and 15b will be the precursor for alkyl substitution in the 3- position.  Compound 

15c will also probe the compatibility of halogen substitution.    

 

Scheme 4 

NaBH4 PPh3 HBr

CH3CN

R1

O

NH2

R1

OH

NH2

R1

PPh3

NH2

MeOH

15a: R1 = Ph, X = H (95%)
15b: R1 = Me, X = H (92%)
15c: R1 = Ph, X = Cl (95%)

X X X
Br-

       

 

Initial studies were aimed at finding the optimal reaction conditions for acid-

catalyzed imine formation of the anilines 15 from aromatic aldehydes. Our investigation 

began with the reaction of phosphonium salt 15a and benzaldehyde (Scheme 5). The 

conditions we applied were similar to the 2-substituted indole procedure. The phosphonium 
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salt 15a and benzaldehyde with a catalytic amount of acetic acid were dissolved in methanol 

and heated in a sealable tube to 80 
o
C for 10 minutes.  After the base mediated step, we 

obtained the 2,3-diphenylindole in 92 % yield. The mild reaction conditions, as well as the 

high yield of this reaction, encouraged us to extend this methodology to a range of aldehydes. 

Scheme 5 

 

     

Next, the scope and limitations of this reaction were examined.  Table 3 summarizes 

the results from the reactions of phosphonium salts 15a-15c with an array of aldehydes under 

the optimized reaction conditions.  We tried a few examples using both conventional thermal 

and microwave conditions (entries 1, 11 and 18). These results show that the reaction 

proceeds very efficiently under both thermal and microwave conditions, but the latter 

conditions are more efficient. The cyclization proceeds smoothly when the substituents in the 

α-position of the phosphonium salt are aryl or alkyl. However, the indole formed by the 

cyclization of phosphonium salt 15a with methyl 4-formylbenzoate (entry 7) gave a slightly 

lower yield (45%). The reason is that this compound is unstable during column 

chromatography. The only way that we could purify the compound was to use a very short 

column to remove most of the triphenylphosphine and then recrystalize the crude material to 

get pure indole 16h.    
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Table 3.  Reaction of 5a-c with aldehydes to generate 2,3-disubstituted indoles
a
 

 

entry 
phosphonium 

salt 
aldehyde product  

isolated 

yield (%)
b
 

1 

15a 
 

 

16a 93 (92)
c
 

2  
  

16b 100 

3  
  

16c 84 

4  
  

16d 90 

5  
 N

H

Ph

Br

 

16e 86 

6  
 

 

16f 100 

7  
 

 

16g 45 

8  
 

 

16h 88 

9  

  

16i 96 

10  
  

16j 56 

a
 Reaction conditions: (i) phosphonium salt 4 (1 mmol), aldehyde (1 mmol), AcOH (0.4 

mmol), methanol (2 mL), (ii) t-BuOK (1.6 mmol), THF (2 mL). 
b
 Isolated yield. 

c
 Conventional thermal yield. 
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Table 3. (continued) 

entry 
phosphonium 

salt 
aldehyde product  

isolated 

yield (%)
b
 

11 

15b 
 

 

16k 97 (95)
c
 

12  
  

16l 85 

13  
  

16m 84 

14  
  

16n 79 

15  

  

16o 72 

16  
 

 

16p 88 

17  
  

16q 78 

18 

15c  
 

16r 100 (96)
c
 

19  
 N

H

Ph
Cl

 

16s 92 

20  
  

16t 96 

21  
 

 

16u 100 

22  

  

16v 93 
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A wide range of aldehydes react effectively with phosphonium salts 15a-c,  including 

those bearing a variety of electron-donating and electron-withdrawing substituents, such as 

aromatic ethers, halides, an ester and hydroxy and aryl groups (entries 2-7, 12-15, and 19-

20). The yields range from 72-100% for most of the cases. A series of heterocyclic aldehydes 

has been examined using this method and shown undergo to smooth cyclization at room 

temperature to afford the corresponding 2,3-disubstituted indoles in excellent yield (entries 9, 

10, 16, 17, 21 and 22).  In addition, we have also expanded this methodology to α,β-

unsaturated aldehydes (entries 8, 19) which also gave high yields. Unfortunately, alkyl 

aldehydes, such as hydrocinnamaldehyde and heptanal, did not form the imine intermediates 

with phosphonium salt 4 under either conventional thermal or microwave conditions 

(Scheme 6). This may be because the alkyl aldehydes are not as stable as the aryl or α,β-

unsaturated aldehydes under the acid conditions and undergo an aldol reaction. Further 

studies are ongoing.  

 

Scheme 6  

AcOH, 65 oC, 12 h, MeOH

N
Ph H

O

NH2

PPh3

4

Ph

PPh3

or AcOH, 80 oC, MW, 10 min

Br- Br-

 

 

We believe that these cyclizations proceed by imine formation, followed by six-

electron ring closure, to form the desired 2,3-disubstituted indoles as shown in Scheme 7. 

The success of this reaction may be due to several factors:  1) the imine intermediates are 
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conjugated with the aromatic system which makes them very good acceptors; 2) the 

triphenylphosphine group is a bulky leaving group and readily eliminates.  

 

Scheme 7 

                  

 

Arcyriacyanin A (18), a pigment of the slime mold of Arcyria obvelata Onsberg, is an 

effective inhibitor of protein kinase C and protein tyrosine kinase.
24

 Since compound 14j has 

been transformed into 18 using 3,4-dibromomaleimide as shown in Scheme 8,
25

 the synthesis 

of compound 14j constitutes a formal two-step total synthesis of 18 from commercially 

available starting materials, a Wittig salt 4 and indole-3-carboxaldehyde 17. 
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Scheme 8 

 

 

Rutaecarpine (19) is an indolopyridoquinazolinone alkaloid isolated from Evodia 

rutaecarpa, which has shown anti-thrombotic, anti-cancer, anti-inflammatory, analgesic, and 

anti-obesity activity (Figure 2).  It has been synthesized by several groups.
26

 Recently, 

biologically active "hybrid" analogs, nor-rutaecarpines 20 and 21 have been isolated and 

synthesized.
27

 The studies show that these compounds exhibit activity against a range of 

ailments including rheumatism, influenza, leukemia and hepatitis.
28

 The indole 22 is an 

advanced intermediate for these rutaecarpine analogs. Lee and co-workers have reported a 

synthesis of compound 22 in 4 steps in 31% overall yield.
29

  Recently, Mate and co-workers 

reported another synthesis of intermediate 22 by a Fisher indole synthesis. It required four 
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steps and afforded a 48% overall yield.
27

 Our route begins with known aldehyde 23, which 

can be synthesized in one step from commercially available 3-methyl quinoxazoline.
30

 The 

indole 22 can be generated from aldehyde 23 and commercially available phosphonium salt 4 

in 81% yield (Scheme 9).  

  

Figure 2 

  

 

Scheme 9 

 

 

Conclusions 

In conclusion, we have developed a very efficient synthesis of 2-substituted and 2,3-

disubstituted indoles by a two-step approach in one pot involving imine formation and six-

electron ring closure, followed by a 1,5-hydrogen shift. These reactions proceed under very 
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mild conditions and remarkably short reaction times. A wide range of aryl or α,β-unsaturated 

aldehydes undergo this process in excellent yield.  The adduct from indole-4-carboxaldehyde 

is an advanced intermediate in the synthesis of arcyriacyanin A, which can be synthesized in 

two steps in 35% overall yield. The adduct from 4-oxo-3,4-dihydroquinazoline-2-

carboxaldehyde is an advanced intermediate in the synthesis of several rutaecarpine analogs.  

 

Experimental Section 

All 
1
H and 

13
C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 

MHz respectively. All melting points are uncorrected. Unless otherwise indicated, all 

reactions were carried out under argon. Microwave reactions were conducted in a capped vial 

using a CEM Discover System. Thin layer chromatography was performed using 

commercially prepared 60-mesh silica gel plates (Whatman K6F), and visualization was 

effected by short wavelength UV light (254 nm). High resolution mass spectra were recorded 

on a Kratos MS50TC double focusing magnetic sector mass spectrometer using EI at 70 eV. 

All reagents were used directly as obtained commercially unless otherwise noted. All yields 

reported represent an average of at least two independent runs. 

General procedure for the synthesis of 2,3-disubstituted indoles from substituted 

2-aminobenzyl phosphonium salts. In a 10 mL microwave reaction vessel (CEM Discover 

System) equipped with a magnetic stir bar, phosphonium salt 5a (262 mg, 0.5 mmol), the 

aldehyde (0.5 mmol) and glacial acetic acid (11.4 µL, 0.2 mmol) were added to 3 mL of 

distilled methanol. The vial was capped properly and placed in the microwave. Microwave 

irradiator was carried out at 300 W, 80 ºC for 10 min. After cooling the vial to room 
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temperature, methanol was removed in vacuum.  Four mL of THF were added to the mixture 

and 0.8 mL of a 1 M t-BuOK solution in THF was added dropwise. The resulting mixture 

was stirred at 25 ºC under the argon for 1 h. The saturated NH4Cl solution (10 mL) was 

added to quench the reaction.  The aqueous layer was extracted with ethyl acetate (3 x 10 

mL). The organic layers were combined and washed with brine (2 x 10 mL). The organic 

layer was separated, dried with MgSO4 and filtered. The filtrate was concentrated under 

vacuum and the residue was purified by silica gel column chromatography using a mixture of 

ethyl acetate and hexanes as the eluent. 

 

 

Spiro[indole-2,3'-indolin]-2'-one (7): The product was purified by chromatography 

on silica gel (Rf = 0.25 in 75% hexanes/25% EtOAc). The product (7) was obtained as a 

white solid (101.0 mg, 86% yield); mp ≥ 250 ºC; 
1
H NMR (400 MHz, DMSO-d6) 11.37 (br s, 

1H), 8.54-8.56 (m, 1H), 8.09-8.11 (dd, J = 8.0, 1.2 Hz, 1H), 7.73-7.76 (m, 1H), 7.41-7.45 (td, 

J = 8.4, 1.2 Hz, 1H), 7.34-7.37 (m, 3H), 7.22-7.27 (m, 2H); 
13

C NMR (100 MHz, DMSO-d6) 

147.2, 134.3, 134.1, 133.4, 129.7, 129.5, 123.7, 123.5, 123.1, 120.3, 115.5, 115.4, 113.6, 98.3; 

HRMS electrospray (m/z) calcd for C15H10N2O, 234.0793; found, 234.0796. 
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2-Phenyl-indole (14a): The product was purified by chromatography on silica gel 

(Rf = 0.3 in 83% hexanes/17% EtOAc). The product (14a) was obtained as a white solid 

(91.7 mg, 95% yield); mp = 188-190 ºC; 
1
H NMR (400 MHz, DMSO-d6) 11.55 (s, 1H), 7.86-

7.88 (d,  J = 8.0 Hz, 2H), 7.53-7.55 (d, J = 8.0 Hz, 1H), 7.41-7.48 (q, J = 8.0 Hz, 3H), 7.29-

7.33 (t, J = 7.2 Hz, 1H), 7.09-7.13 (t,  J = 7.2 Hz, 1H), 6.99-7.03 (t, J = 7.6 Hz, 1H), 6.90 (d, 

J = 1.6 Hz, 1H);
 13

C NMR (100 MHz, DMSO-d6) 137.6, 137.1, 132.2, 128.9, 128.6, 127.4, 

125.0, 121.6, 120.1, 119.4, 111.3, 98.7; HRMS electrospray (m/z) calcd for C14H11N, 

193.0892; found, 193.0895. 

 

 

2-(4-Bromophenyl)-indole (14b): The product was purified by chromatography on 

silica gel (Rf = 0.45 in 80% hexanes/20% EtOAc). The product (14b) was obtained as a white 

solid (129.0 mg, 95% yield); mp = 211-213 ºC; 
1
H NMR (400 MHz, Acetone-d6) 10.73 (br s, 

1H), 7.79-7.81 (d, J = 8.4 Hz, 2H), 7.57-7.62 (m, 3H), 7.41-7.43 (d, J = 8.4 Hz, 1H), 7.11-

7.15 (t, J = 7.2 Hz, 1H), 7.02-7.06 (t, J = 7.6 Hz, 1H), 6.93 (s, 1H); 
13

C NMR (100 MHz, 

Acetone-d6) 139.0, 138.0, 133.3, 130.6, 128.2, 123.5, 121.9, 121.7, 121.1, 112.6, 101.1; 

HRMS electrospray (m/z) calcd for C14H10BrN, 270.9997; found, 271.0001. 
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2-(2-Methoxyphenyl)-indole (14c): The product was purified by chromatography on 

silica gel (Rf = 0.40 in 80% hexanes/20% EtOAc). The product (14c) was obtained as a white 

solid (90.5 mg, 81% yield); mp = 83 ºC; 
1
H NMR (400 MHz, CDCl3) 9.69 (br s, 1H), 7.86-

7.88 (d, J = 7.6 Hz, 1H), 7.65-7.67 (d, J = 7.6 Hz, 1H), 7.43-7.45 (d, J = 8 Hz, 1H), 7.29-7.33 

(t, J = 7.2 Hz, 1H), 7.19-7.22 (t, J = 7.2 Hz, 1H), 7.11-7.15 (t, J = 7.2 Hz, 1H), 7.04-7.09 (t, J 

= 8 Hz, 2H), 6.93 (s, 1H), 4.04 (s, 3H);
 13

C NMR (100 MHz, CDCl3) 136.3, 136.2, 128.8, 

128.5, 128.3, 122.0, 121.8, 120.8, 120.5, 120.0, 112.1, 111.1, 100.0; HRMS electrospray 

(m/z) calcd for C15H13NO, 223.0997; found, 223.1000. 

 

 

2-(4-Nitrophenyl)-indole (14d): The product was purified by chromatography on 

silica gel (Rf = 0.35 in 83% hexanes/16% EtOAc). The product (14d) was obtained as a 

yellow solid (102.4 mg, 86% yield); mp = 248-250 ºC; 
1
H NMR (400 MHz, Acetone-d6) 

10.97 (br s, 1H), 8.31-8.33 (d, J = 8.8 Hz, 2H), 8.11-8.13 (d, J = 8.8 Hz, 2H), 7.63-7.65 (d, J 

= 8 Hz, 1H), 7.45-7.47 (d, J = 8 Hz, 1H), 7.16-7.21 (m, 2H), 7.06-7.10 (t, J = 8 Hz, 1H); 
13

C 

NMR (100 MHz, Acetone-d6) 147.4, 139.8, 139.3, 136.4, 130.0, 126.3, 125.2, 124.2, 121.9, 

121.2, 112.5, 103.6; HRMS electrospray (m/z) calcd for C14H10N2O2, 238.0742; found, 

238.0747. 



www.manaraa.com

21 

 

 

 

2-(Naphthalen-1-yl)-indole (14e): The product was purified by chromatography on 

silica gel (Rf = 0.45 in 83% hexanes/17% EtOAc). The product (14e) was obtained as a white 

solid (113.1 mg, 93% yield); mp = 97-99 ºC; 
1
H NMR (400 MHz, CDCl3) 8.11-8.36 (m, 2H), 

7.91-7.94 (m, 2H), 7.73-7.75 (d, J = 7.6 Hz, 1H), 7.65-7.67 (dd, J = 6.8, 0.8 Hz, 1H), 7.53-

7.58 (m, 3H), 7.46-7.48 (d, J = 8.0 Hz, 1H), 7.19-7.29 (m, 2H), 6.82-6.83 (d, J = 1.2 Hz, 1H); 

13
C NMR (100 MHz, CDCl3) 136.9, 136.6, 134.1, 131.7, 131.3, 129.0, 128.8, 128.7, 127.4, 

126.9, 126.4, 125.9, 125.6, 122.4, 120.8, 120.4, 111.1, 103.9; HRMS electrospray (m/z) 

calcd for C18H13N, 243.1048; found, 243.1051. 

 

 

2-(Furan-2-yl)-indole (14f): The product was purified by chromatography on silica 

gel (Rf = 0.3 in 83% hexanes/17% EtOAc). The product (14f) was obtained as a white solid 

(79.0 mg, 86% yield); mp = 120-123 ºC; 
1
H NMR (400 MHz, CDCl3) 8.44 (br s, 1H), 7.63-

7.65 (d, J = 7.6 Hz, 1H), 7.48-7.49 (d, J = 1.6 Hz, 1H), 7.38-7.40 (d, J = 8.0 Hz, 1H), 7.20-

7.24 (td, J = 8.0, 1.2 Hz, 1H), 7.13-7.17 (t, J = 8.0 Hz, 1H), 6.77-6.78 (d, J = 1.6 Hz, 1H), 

6.64-6.65 (d, J = 3.2 Hz, 1H), 6.52-6.54 (multiple peaks, 1H); 
13

C NMR (100 MHz, CDCl3) 
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147.9, 141.9, 136.3, 129.4, 129.0, 122.7, 120.9, 120.6, 112.0, 111.1, 105.6, 99.0; HRMS 

electrospray (m/z) calcd for C12H9NO, 183.0684; found, 183.0686. 

 

 

2-(Pyridin-3-yl)-indole (14g): The product was purified by chromatography on silica 

gel (Rf = 0.20 in 60% hexanes/40% EtOAc). The product (14g) was obtained as a white solid 

(83.0 mg, 85% yield); mp = 175-176 ºC; 
1
H NMR (400 MHz, Acetone-d6) 10.90 (br s, 1H), 

9.12-9.13 (m, 1H), 8.51-8.53 (dd, J = 4.8, 1.6 Hz, 1H), 8.18-8.21 (td, J = 8.0, 2.0 Hz, 1H), 

7.60-7.62 (d, J = 8.0 Hz, 1H), 7.42-7.45 (m, 2H), 7.13-7.17 (td, J = 8.0, 0.8 Hz, 1H), 7.04-

7.08 (td, J = 8.0, 0.8 Hz, 1H), 7.02-7.03 (d, J = 1.6 Hz, 1H); 
13

C NMR (100 MHz, Acetone-

d6) 149.2, 147.4, 138.7, 135.8, 132.8, 130.1, 129.5, 124.7, 123.3, 121.4, 120.8, 112.2, 101.2; 

HRMS electrospray (m/z) calcd for C13H10N2, 194.0844; found, 194.0846. 

 

 

(E)-2-Styryl-indole (14h): The product was purified by chromatography on silica gel 

(Rf = 0.40 in 83% hexanes/17% EtOAc). The product (14h) was obtained as a white solid 

(106.2 mg, 97% yield); mp = 202-204 ºC; 
1
H NMR (400 MHz, CDCl3) 8.24 (br s, 1H), 7.59-

7.61 (d, J = 7.6 Hz, 1H), 7.51-7.53 (d, J = 7.6 Hz, 2H), 7.35-7.41 (t, J = 7.2, 5.2 Hz, 3H), 
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7.29-7.31 (d, J = 7.2 Hz, 1H), 7.19-7.23 (t, J = 7.2 Hz, 1H), 7.10-7.16 (m, 2H), 6.90-6.94 (d, 

J = 16.4 Hz, 1H), 6.64 (s, 1H); 
13

C NMR (100 MHz, CDCl3) 137.1, 137.0, 136.5, 129.2, 

129.0, 128.0, 127.3, 126.5, 123.1, 120.9, 120.4, 119.2, 110.8, 104.1; HRMS electrospray 

(m/z) calcd for C16H13N, 219.1048; found, 219.1052. 

 

 

(S)-2-(4-(Prop-1-en-2-yl) cyclohex-1-enyl)-indole (14i): The product was purified 

by chromatography on silica gel (Rf = 0.45 in 90% hexanes/10% EtOAc). The product (14i) 

was obtained as a white solid (98.4 mg, 83% yield); mp = 164-165 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.10 (br s, 1H), 7.57-7.59 (d, J = 7.6 Hz, 1H), 7.32-7.34 (d, J = 8.4 Hz, 1H), 7.15-

7.19 (t, J = 8.0 Hz, 1H), 7.07-7.11 (t, J = 8.0 Hz, 1H), 6.47 (s, 1H), 6.14-6.15 (t, J = 2.4 Hz, 

1H), 2.62-2.67 (m, 1H), 2.48-2.55 (m, 1H), 2.38-2.42 (m, 1H), 2.27-2.33 (m, 1H), 2.16-2.23 

(m, 1H), 1.99-2.04 (m, 1H), 1.82 (s, 3H), 1.60-1.71(m, 1H); 
13

C NMR (100 MHz, CDCl3) 

149.7, 139.2, 136.4, 129.1, 129.0, 122.3, 122.1, 120.6, 120.0, 110.6, 109.2, 99.2, 41.1, 31.2, 

27.7, 26.8, 21.1; HRMS electrospray (m/z) calcd for C17H19N, 237.1518; found, 237.1521.  

 

 

2,4'-Biindole (14j): The product was purified by chromatography on silica gel (Rf = 

0.30 in 67% hexanes/33% EtOAc). The product (14j) was obtained as a white solid (101.1 
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mg, 87% yield); mp = 202-203 ºC; 
1
H NMR (400 MHz, Acetone-d6) 10.57 (br s, 1H), 10.47 

(br s, 1H), 7.63-7.65 (d, J = 7.6 Hz, 1H), 7.46-7.52 (m, 4H), 7.21-7.25 (t, J = 7.6 Hz, 1H), 

7.12-7.16 (t, J = 7.2 Hz, 1H), 7.04-7.08 (t, J = 7.2 Hz, 1H), 7.01 (s, 2H); 
13

C NMR (100 

MHz, Acetone-d6) 139.4, 138.03, 138.02, 130.4, 126.5, 126.2, 125.9, 122.4, 122.3, 121.0, 

120.3, 118.3, 112.0, 111.9, 102.3, 101.7.; HRMS electrospray (m/z) calcd for C16H12N2, 

232.1001; found, 232.1004. 

 

 

[(2-Aminophenyl) (phenyl) methyl] triphenylphosphonium bromide (15a): The 

product was obtained as light yellow solid; 
1
H NMR (400 MHz, DMSO-d6) 7.88-7.91 (t, J = 

7.2 Hz, 3H), 7.61-7.75 (m, 13H), 7.24-7.32 (m, 5H), 7.04-7.08 (t, J = 7.6 Hz, 1H), 6.78-6.80 

(d, J = 8.0 Hz, 1H), 6.65-6.67 (d, J = 7.6 Hz, 1H), 6.56-6.61 (d, J = 20 Hz, 1H), 6.36-6.40 (t, 

J = 7.2 Hz, 1H); 
13

C NMR (100 MHz, DMSO-d6) 147.5, 135.9, 135.8, 135.3, 135.2, 134.0, 

133.8, 132.54, 132.50, 131.34, 131.28, 130.9, 130.8, 130.3, 130.1, 130.0, 129.7, 129.5, 

129.42, 129.37, 119.4, 118.6, 117.7, 116.8, 116.5, 57.0. 

 

[1-(2-Aminophenyl)ethyl] triphenylphosphonium bromide (15b): The product 

was obtained as light yellow solid; 
1
H NMR (400 MHz, DMSO-d6) 7.90-7.93 (m, 3H), 7.65-
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7.76 (m, 13H), 7.01-7.04 (t, J = 8.0 Hz, 1H), 6.70-6.73 (d, J = 8.4 Hz, 1H), 6.29-6.33 (t, J = 

7.2 Hz, 1H), 6.13-6.15 (d, J = 8.0 Hz, 1H), 5.32-5.37 (m, 1H), 2.08 (s, 2H), 1.67-1.73 (dd, J 

= 14.8, 7.2 Hz, 3H); 
13

C NMR (100 MHz, DMSO-d6) 148.2, 148.1, 135.74, 135.71, 135.1, 

135.0, 130.9, 130.8, 130.1, 129.1, 129.08, 118.9, 118.0, 117.1, 117.0, 116.7, 116.6, 29.7, 

29.2, 18.3. 

 

 

[(2-Amino-4-chlorophenyl) (phenyl)methyl] triphenylphosphonium bromide 

(15c): The product was obtained as a yellow solid; 
1
H NMR (400 MHz, DMSO-d6) 7.92 (bs, 

3H), 7.69-7.74 (m, 12H), 7.29 (s, 5H), 7.08-7.10 (d, J = 8.8 Hz, 1H), 6.81-6.83 (d, J = 8.4 

Hz, 1H), 6.70-6.75 (d, J = 19.6 Hz, 1H), 6.42 (s, 1H), 6.04 (bs, 2H); 
13

C NMR (100 MHz, 

DMSO-d6) 136.1, 136.0, 135.4, 135.3, 135.2, 133.9, 132.9, 132.7, 132.69, 132.2, 132.14, 

132.10, 131.2, 131.1, 131.0, 130.97, 130.8, 130.1, 129.6, 129.5, 129.4, 129.37, 119.0, 118.9, 

118.2.  

     

 

2, 3-Diphenyl-indole (16a): The product was purified by chromatography on silica 

gel (Rf = 0.45 in 90% hexanes/10% EtOAc). The product (16a) was obtained as a white solid 



www.manaraa.com

26 

 

(134 mg, 100% yield);  mp = 123-124 ºC; 
1
H NMR (400 MHz, CDCl3) 8.20 (br s, 1H), 7.70-

7.72 (d, J = 8.0 Hz, 1H), 7.38-7.48 (m, 7H), 7.24-7.35 (m, 5H), 7.16-7.20 (t, J = 7.2 Hz, 1H); 

13
C NMR (100 MHz, CDCl3) 1326.0, 135.2, 134.2, 132.8, 130.3, 128.9, 128.8, 128.6, 128.3, 

127.8, 126.3, 122.8, 120.5, 119.8, 115.1, 111.0; HRMS electrospray (m/z) calcd for C20H15N, 

269.1205; found, 269.1214. 

 

 

2-(4-Methoxyphenyl)-3-phenyl-indole (16b): The product was purified by 

chromatography on silica gel (Rf = 0.20 in 80% hexanes/20% EtOAc). The product (16b) 

was obtained as a yellow solid (142 mg, 95% yield); 
1
H NMR (400 MHz, CDCl3) 8.22 (br s, 

1H), 7.77-7.79 (d, J = 8.0 Hz, 1H), 7.53-7.55 (m, 2H), 7.35-7.48 (m, 6H), 7.22-7.33(m, 2H), 

6.89-6.92 (m, 2H), 3.85 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 159.3, 135.9, 135.4, 134.3, 

130.3, 130.0, 129.6, 129.5, 128.9, 128.6, 128.5, 126.2, 125.3, 122.5, 120.4, 119.6, 55.4.  
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2-(4-Fluorophenyl)-3-phenyl-indole (16c): The product was purified by 

chromatography on silica gel (Rf = 0.40 in 90% hexanes/10% EtOAc). The product (16c) was 

obtained as a yellow solid (120.5 mg, 84% yield); mp = 165-166 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.16 (br s, 1H), 7.74-7.76 (d, J = 8.0 Hz, 1H), 7.34-7.45 (m, 8H), 7.21-7.33 (m, 2H), 

7.00-7.05(t, J = 8.8 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) 163.6, 161.1, 136.0, 135.0, 133.3, 

130.2, 130.1, 130.0, 128.92, 128.89, 128.75, 128.7, 126.5, 122.9, 120.7, 119.8, 116.0, 115.8, 

115.1, 111.1.  

 

 

2-(4-Chlorophenyl)-3-phenyl-indole (16d): The product was purified by 

chromatography on silica gel (Rf = 0.40 in 90% hexanes/10% EtOAc). The product (16d) 

was obtained as a yellow solid (136 mg, 90% yield); mp = 123-124 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.22 (br s, 1H), 7.74-7.76 (d, J = 8.0 Hz, 1H), 7.43-7.50 (m, 5H), 7.30-7.40 (m, 6H), 

7.22-7.26(td, J = 8, 0.8 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) 136.1, 134.9, 133.6, 133.0, 

131.2, 130.2, 129.5, 129.0, 128.8, 128.78, 126.6, 123.1, 120.7, 120.0, 115.6, 111.1. 
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2-(4-Bromophenyl)-3-phenyl-indole (16e): The product was purified by 

chromatography on silica gel (Rf = 0.40 in 90% hexanes/10% EtOAc). The product (16e) was 

obtained as a yellow solid (150 mg, 86% yield); 
1
H NMR (400 MHz, CDCl3) 8.21 (br s, 1H), 

7.73-7.75 (d, J = 8.0 Hz, 1H), 7.43-7.50 (m, 7H), 7.36-7.40 (m, 16H), 7.27-7.34 (m, 3H), 

7.21-7.25 (td, J = 8, 0.8 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) 136.1, 134.9, 133.6, 132.9, 

131.9, 131.7, 130.2, 129.8, 128.8, 128.79, 126.6, 123.1, 121.9, 120.7, 119.9, 115.6, 111.2.  

 

 

2-(4-Methoxy-3-phenol)-3-phenyl-indole (16f): The product was purified by short 

chromatography on silica gel (Rf = 0.35 in 80% hexanes/20% EtOAc). The product was 

obtained as a yellow solid (157 mg, 100% yield); mp = 72-74 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.33 (s, 1H), 7.34-7.54 (d, J = 8.0 Hz, 1H), 7.51-7.53 (d, J = 6.8 Hz, 2H), 7.19-7.45 

(m, 5H), 7.08-7.09 (d, J = 2.0 Hz, 1H), 6.90-6.92 (m, 1H), 6.72-6.74 (d, J = 8.4 Hz, 1H), 3.83 

(s, 3H); 
13

C NMR (100 MHz, CDCl3) 146.5, 145.7, 135.9, 135.4, 134.2, 130.3, 128.9, 128.7, 

126.3, 126.1, 122.5, 120.7, 120.4, 119.6, 114.5, 114.3, 111.1, 111.0, 55.98; HRMS 

electrospray (m/z) calcd for C21H17NO2, 315.1259; found, 315.1264. 
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Methyl 4-(3-phenyl-indol-2-yl) benzoate (16g): The product was purified by short 

chromatography on silica gel (Rf = 0.30 in 90% hexanes/10% EtOAc). The product was 

obtained by recrystillization from the mixture of CH2Cl2 and hexane as a white solid (74 mg, 

45% yield); mp = 192-193 ºC; 
1
H NMR (400 MHz, DMSO-d6) 11.76 (s, 1H), 7.91-7.93 (d, J 

= 8.4 Hz, 2H), 7.58-7.60 (d, J = 8.4 Hz, 2H), 7.49-7.51 (d, J = 8.4 Hz, 2H), 7.29-7.43 (m, 

5H), 7.19-7.23 (m, 1H), 7.05-7.08 (t, J=7.6 Hz, 1H), 3.84 (s, 3H); 
13

C NMR (100 MHz, 

DMSO-d6) 166.4, 137.6, 137.0, 135.3, 133.1, 130.3, 129.8, 128.6, 128.4, 126.9, 123.2, 120.5, 

119.4, 115.5, 112.2, 52.6; HRMS electrospray (m/z) calcd for C22H17NO2, 327.1259; found, 

327.1263. 

 

 

(E)-3-Phenyl-2-styryl-1H-indole (16h): The product was purified by 

chromatography on silica gel (Rf = 0.70 in 80% hexanes/20% EtOAc). The product (16h) was 

obtained as a yellow solid (130 mg, 88% yield); mp = 106-107 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.29 (br s, 1H), 7.75-7.77 (d, J = 8.0 Hz, 1H), 7.17-7.62 (m, 14H), 6.88-6.92 (d, J = 
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16.4 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) 137.1, 136.6, 134.7, 132.7, 130.3, 128.9, 128.8, 

128.3, 127.8, 127.5, 126.7, 126.5, 123.7, 120.6, 119.8, 118.9, 110.8.   

 

N
H

NH

 

3-Phenyl-2,3'-biindole (16i): The product was purified by short chromatography on 

silica gel (Rf = 0.15 in 75% hexanes/25% EtOAc). The product was obtained as a yellow 

solid (117 mg, 76% yield); mp = 202-204 ºC; 
1
H NMR (400 MHz, DMSO-d6) 11.40 (s, 1H), 

11.30 (s, 1H), 7.59-7.61 (d, J = 8.0 Hz, 1H), 7.39-7.50 (m, 5H), 7.29-7.33 (t, J = 7.6 Hz, 2H), 

7.05-7.20 (m, 5H), 6.83-6.87 (t, J = 7.2 Hz, 1H); 
13

C NMR (100 MHz, DMSO-d6) 136.7, 

136.6, 130.8, 129.6, 128.9, 128.3, 125.9, 125.7, 125.5, 122.1, 121.6, 120.4, 120.0, 119.8, 

118.4, 112.6, 112.2, 111.7, 108.2;  HRMS electrospray (m/z) calcd for C22H16N2, 308.1313; 

found, 308.1319. 

 

 

2-(1-Methyl-pyrrol-2-yl)-3-phenyl-indole (16j): The product was purified by short 

chromatography on silica gel (Rf = 0.25 in 80% hexanes/20% EtOAc). The product was 
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obtained as a yellow solid after recrystalation (76 mg, 56% yield); mp = 60-61 ºC; 
1
H NMR 

(400 MHz, CDCl3) 8.14 (s, 1H), 7.86-7.88 (d, J = 7.6 Hz, 1H), 7.35-7.43 (m, 5H), 7.19-7.30 

(m, 3H), 6.65-6.67 (t, J = 2.0 Hz, 1H), 6.41-6.42 (m, 1H), 6.26-6.28 (t, J = 3.2 Hz, 1H), 3.05 

(s, 3H); 
13

C NMR (100 MHz, CDCl3) 135.8, 135.7, 128.9, 128.7, 127.5, 127.0, 126.0, 125.6, 

123.8, 122.7, 120.5, 119.6, 115.8, 111.0, 110.5, 108.3, 34.43; HRMS electrospray (m/z) 

calcd for C19H16N2, 272.1313; found, 272.1318. 

 

 

3-Methyl-2-phenyl-indole (16k): The product was purified by short chromatography 

on silica gel (Rf = 0.35 in 90% hexanes/10% EtOAc). The product was obtained as a yellow 

solid (100.4 mg, 97% yield); mp = 93-94 ºC; 
1
H NMR (400 MHz, CDCl3) 8.00 (s, 1H), 7.68-

7.70 (d, J = 8.0 Hz, 1H), 7.62-7.64 (m, 2H), 7.52-7.56 (t, J = 7.6 Hz, 2H), 7.40-7.44 (m, 4H), 

7.22-7.31 (m 2H), 2.54 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 136.0, 134.2, 133.8, 133.5, 

132.3, 132.2, 130.1, 128.9, 128.7, 128.68, 128.62, 128.6, 127.9, 127.4, 122.4, 119.6, 119.0, 

110.9, 108.7, 9.82.   
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2-(4-Methoxyphenyl)-3-methyl-indole (16l): The product was purified by short 

chromatography on silica gel (Rf = 0.20 in 80% hexanes/20% EtOAc). The product was 

obtained as a yellow solid (99 mg, 83% yield); mp = 126-127 ºC; 
1
H NMR (400 MHz, 

CDCl3) 7.95 (s, 1H), 7.63-7.64 (d, J = 7.6 Hz, 1H), 7.49-7.51 (d, J = 8.8 Hz, 2H), 7.33-7.35 

(d, J = 8.0 Hz, 1H), 7.18-7.25 (m, 2H), 7.02-7.04 (d, J = 8.8 Hz, 2H), 3.28 (s, 3H), 2.47 (s, 

3H); 
13

C NMR (100 MHz, CDCl3) 159.0, 135.8, 134.1, 130.2, 129.1, 126.0, 122.0, 119.5, 

118.9, 114.4, 110.7, 107.8, 55.5, 9.74.  

 

 

2-(4-Fluorophenyl)-3-methyl-indole (16m): The product was purified by short 

chromatography on silica gel (Rf = 0.60 in 80% hexanes/20% EtOAc). The product was 

obtained as a white solid (94.5 mg, 84% yield); mp = 148-149 ºC; 
1
H NMR (400 MHz, 

CDCl3) 7.89 (s, 1H), 7.62-7.64 (d, J = 7.6 Hz, 1H), 7.50-7.53 (m, 2H), 7.34-7.36 (d, J = 8.0 

Hz, 1H), 7.16-7.26 (m, 4H), 2.46 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 163.4, 161.0, 135.9, 

133.2, 130.0, 129.6, 129.5, 129.49, 122.5, 119.7, 119.1, 116.0, 115.8, 110.8, 108.7;  HRMS 

electrospray (m/z) calcd for C15H12FN. 225.0954; found, 225.0956. 
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2-(4-Bromophenyl)-3-methyl-indole (16n): The product was purified by short 

chromatography on silica gel (Rf = 0.60 in 90% hexanes/10% EtOAc). The product was 

obtained as a yellow solid (110 mg, 77% yield); mp = 168 ºC; 
1
H NMR (400 MHz, CDCl3) 

7.97 (s, 1H), 7.57-7.62 (m, 3H), 7.40-7.42 (d, J = 8.4 Hz, 2H), 7.33-7.35 (d, J = 7.6 Hz, 1H), 

7.22-7.25 (t, J = 7.2 Hz, 1H), 7.15-7.19(t, J = 7.2 Hz, 1H), 2.44 (s, 3H); 
13

C NMR (100 MHz, 

CDCl3) 136.0, 132.9, 132.3, 132.0, 130.0, 129.2, 122.7, 121.4, 119.8, 119.2, 110.9, 109.3, 

9.78; HRMS electrospray (m/z) calcd for C15H12BrN. 285.0153; found, 285.0156. 

 

 

Methyl 4-(3-methyl-indol-2-yl) benzoate (16o): The product was purified by short 

chromatography on silica gel (Rf = 0.30 in 90% hexanes/10% EtOAc). The product was 

obtained as a white solid (95.4 mg, 72% yield); mp = 186-187 ºC; 
1
H NMR (400 MHz, 

DMSO-d6) 11.35 (s, 1H), 8.07-8.09 (d, J = 8.4 Hz, 2H), 7.83-7.85 (d, J = 8.4 Hz, 2H), 7.56-

7.58 (d, J = 7.6 Hz, 1H), 7.40-7.42 (d, J = 7.6 Hz, 1H), 7.14-7.18 (t, J = 7.2 Hz, 1H), 7.02-

7.06 (t, J = 7.2 Hz, 1H), 3.88 (s, 3H), 2.47 (s, 3H); 
13

C NMR (100 MHz, DMSO-d6) 166.5, 

138.1, 136.9, 132.9, 130.1, 129.8, 128.0, 127.7, 122.9, 119.4, 119.3, 111.7, 109.5, 52.6, 10.6; 

HRMS electrospray (m/z) calcd for C17H15NO2. 265.1103; found, 265.1106. 
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3-Methyl-2-(pyridin-2-yl)-indole (16p): The product was obtained as a yellow solid 

(86 mg, 83% yield); mp = 93-94 ºC; 
1
H NMR (400 MHz, CDCl3) 9.55 (s, 1H), 8.61-8.62 (m, 

1H), 7.72-7.80 (m, 2H), 7.62-7.64 (dd, J = 8.0, 0.8 Hz, 1H), 7.35-7.37 (d, J = 8.0 Hz, 1H), 

7.09-7.23 (m, 3H), 2.62 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 151.1, 149.4, 136.5, 135.4, 

132.3, 130.2, 123.3, 121.4, 121.1, 119.34, 119.30, 111.1, 110.5, 10.78. 

 

 

2-(Furan-2-yl)-3-methyl-indole (16q): The product was purified by short 

chromatography on silica gel (Rf  = 0.20 in 80% hexanes/20% EtOAc). The product was 

obtained as a yellow solid (77 mg, 78% yield); mp: 60-61 ºC; 
1
H NMR (400 MHz, CDCl3) 

8.36 (s, 1H), 7.61-7.63 (d, J = 7.6 Hz, 1H), 7.508-7.511 (d, J = 1.2 Hz, 1H), 7.36-7.38 (d, J = 

8.0 Hz, 1H), 7.14-7.23 (m, 2H), 6.57-6.62 (m, 2H), 2.50 (s, 3H); 
13

C NMR (100 MHz, 

CDCl3) 147.9, 141.2, 135.6, 129.5, 125.5, 122.6, 119.6, 118.9, 111.9, 110.8, 108.4, 106.2, 

9.67; HRMS electrospray (m/z) calcd for C13H11NO, 197.0861; found, 197.0863. 

 



www.manaraa.com

35 

 

 

5-Chloro-2,3-diphenyl-indole (16r): The product was purified by short 

chromatography on silica gel (Rf = 0.30 in 80% hexanes/20% EtOAc). The product was 

obtained as a white solid (134 mg, 100% yield); mp = 126-127 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.24 (s, 1H), 7.651-7.652 (d, J=0.4, 1H), 7.37-7.40 (m, 6H), 7.29-7.35 (m, 5H), 7.18-

7.20 (dd, J=8.8, 2 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) 135.5, 134.5, 134.3, 132.2, 130.1, 

130.0, 128.8, 128.78, 128.2, 128.1, 126.6, 126.2, 123.0, 119.2, 114.8, 112.0. 

 

 

(E)-5-chloro-3-phenyl-2-styryl-indole (16s): The product was purified by short 

chromatography on silica gel (Rf = 0.30 in 80% hexanes/20% EtOAc). The product was 

obtained as a light yellow solid (151 mg, 92% yield); mp = 164-165 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.49 (s, 1H), 7.635-7.639 (d, J = 1.6 Hz, 1H), 7.50-7.51 (d, J = 4.4 Hz, 4H), 7.38-

7.42 (m, 3H), 7.31-7.35 (t, J = 7.2 Hz, 2H), 7.16-7.26 (m, 4H), 6.89-6.93 (d, J = 16.4 Hz, 

1H); 
13

C NMR (100 MHz, CDCl3) 136.8, 134.8, 134.0, 133.9, 130.1, 129.3, 128.9, 128.2, 

128.0, 126.9, 126.5, 126.1, 123.7, 119.1, 118.2, 117.6, 111.7; HRMS electrospray (m/z) 

calcd for C22H16ClN, 329.0971; found, 329.0971. 
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2-(4-Bromophenyl)-5-chloro-3-phenyl-indole (16t): The product was purified by 

short chromatography on silica gel (Rf  = 0.45 in 80% hexanes/20% EtOAc). The product 

was obtained as a white solid (182 mg, 96% yield); mp = 176-178 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.19 (s, 1H), 7.600-7.605 (d, J = 2.0 Hz, 1H), 7.28-7.43 (m, 8H), 7.17-7.24 (m, 3H); 

13
C NMR (100 MHz, CDCl3) 134.3, 134.2, 134.1, 132.0, 131.1, 130.0, 129.9, 129.6, 128.9, 

126.9, 126.4, 123.3, 122.2, 119.2, 115.3, 112.1; HRMS electrospray (m/z) calcd for 

C20H13BrClN, 380.9920; found, 380.9925. 

 

 

5-Chloro-2-(furan-2-yl)-3-phenyl-indole (16u): The product was purified by short 

chromatography on silica gel (Rf = 0.40 in 90% hexanes/10% EtOAc). The product was 

obtained as a yellow solid (146 mg, 100% yield); mp = 90-91 ºC; 
1
H NMR (400 MHz, 

CDCl3) 8.63 (s, 1H), 7.52-7.58 (m, 5H), 7.43-7.47 (m, 2H), 7.21-7.31 (m, 2H), 6.41 (s, 2H); 

13
C NMR (100 MHz, CDCl3) 146.6, 141.7, 134.0, 133.9, 130.2, 130.0, 128.9, 127.4, 126.5, 

126.2, 123.2, 119.0, 114.0, 112.1, 112.0, 107.5;  HRMS electrospray (m/z) calcd for 

C18H12ClNO, 293.0607; found, 293.0612. 
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5-Chloro-3-phenyl-2,3'-biindole (16v): The product was purified by short 

chromatography on silica gel (Rf = 0.15 in 60% hexanes/40% EtOAc). The product was 

obtained as a light yellow solid (159 mg, 93% yield); mp = 220-221 ºC; 
1
H NMR (400 MHz, 

DMSO-d6) 11.6 (s, 1H), 11.5 (s, 1H), 7.43-7.59 (m, 6H), 7.32-7.36 (d, J = 7.6 Hz, 2H), 7.10-

7.24 (m, 4H), 6.88-6.92 (t, J = 7.2 Hz, 1H); 
13

C NMR (100 MHz, DMSO-d6) 136.8, 136.0, 

135.1, 133.0, 129.7, 129.6, 129.0, 126.2, 126.1, 125.7, 124.6, 122.1, 121.4, 120.5, 119.8, 

117.5, 113.2, 112.3, 112.2, 107.6; HRMS electrospray (m/z) calcd for C22H15ClN2, 342.0924; 

found, 342.0928. 
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CHAPTER 2. A DIRECT SYNTHESIS OF NEOCRYPTOLEPINE 

 

Introduction 

More than 2.5 million people die annually from malaria, one of the most serious 

parasitic diseases in developing and industrialized nations. 
1,2

 The root of the west African 

plant Cryptolepis sanguinlenta have been traditionally used to treat a variety of health 

disorders, including malaria,  rheumatism, urinary tract infections and other diseases.
3,4

 The 

linear indolequinoline alkaloids cryptolepine (1),  neocryptolepine (2) (also called 

cryptotackieine) and isocryptolepine (3) (also called cryptosanguinolentine) shown in Figure 

1, were isolated from Cryptolepis sanguinlenta  in 1996 by two groups.
5
 All of these 

compounds can function as DNA intercalating agents, inhibiting DNA replication and 

transcription. These compounds also exhibit potent antiplasmodial activity. However, 

compound 1 has a 10-fold higher affinity for DNA than the other alkaloids and also shows 

stronger inhibition of human topisomerase Ⅱ.
6
 Consequently, compounds 2 and 3 are more 

promising leads for new anti-malarial agents.  

 

 

Figure 1. The indole quinoline cryptolepine (1), neocryptolepine (2)  

and isocryptolepine (3) 
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In the past decade, the significant biological activity and challenging structure of this 

class of natural products have drawn many synthetic chemists’ attention.  A number of 

syntheses for compounds 2 
7-10

 and 3 
11-16

 have been reported. 

 In 1997, Alajarin et al. reported a formal synthetic route to compound 2 using an aza-

Wittig-type reaction in three steps from a known compound 4 with an overall yield of 15% as 

shown in Scheme 1.
7
 The synthesis started from iminophosphane 4, which was synthesized 

from commercially available (o-aminophenyl) acetylene in 47% yield,
17

  followed by an aza-

Wittig-type reaction with phenyl isocyanate in toluene to make the carbodiimide intermediate. 

After further thermal treatment, the intermediate 5 was prepared in 19% yield from 4 and 2-

anilinoquinoline (40% yield) was the major by product. The target molecule neocrytolepine 

(2) could be obtained in one step from compound 5 by methylation.
18-19

   

 

Scheme 1 
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In 2001, Molina et al. reported a total synthesis of compound 2 in 10 steps in 9% 

yield and compound 3 in 11 steps in 17% yield, which shared the same key intermediate 8 as 

shown in Scheme 2.
8
 Condensation of 2-nitrobenzyl-triphenylphosphonium bromide with 2-

azidobenzaldehyde in the presence of potassium carbonate resulted in a stilbene, which could 

be converted in 4 steps to isocyanate 6. The key intermediate 7 was achieved by further 

microwave-promoted cyclization of isocyanate 6. Another 3 steps were needed to make the 

key azide 8. With azide 8, compound 2 can be made in one step using an intramolecular aza-

Wittig reaction under the microwave assisted conditions. Compound 3 can be prepared in 

two steps via nitrene insertion, followed by reduction.  

 

Scheme 2 
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Pieters and co-workers reported a total synthesis of compound 2 in 5 steps in 2002 

using the diradical cyclization shown in Scheme 3 as the key step.
9
  The reaction sequence 

starts with a Sonogashira coupling reaction and an aza-Wittig reaction to afford the 

carbodiimide 9. After biradical cyclization in the presence of 1,4-cyclohexadiene, 

intermediate 10 was prepared in 60% yield. The target molecule, compound 1, could be 

achieved by methylation and desilylation.  

 

Scheme 3 

I

NH2

3 steps

TMS

N C N
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N
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N

N
Me

Neocryptolepine (1)

9 10

 

 

More recently, Tilve and co-workers have reported a direct synthesis of compound 2 

via double reductive cyclization as the key step as shown in Scheme 4.
10

 The condensation of 

o-nitrobenzaldehyde and o-nitrophenylacetic acid, followed by esterification, afforded the 

stilbene 11. Reduction of 11 with iron and acetic acid in the  presence of hydrochloride acid 

gave intermediate 5 in 74% yield. The synthesis of compound 2 was achieved by 
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regioselective methylation in 80% yield. The overall yield for this synthesis is 42% over 4 

steps, which is the highest yield reported so far.  

Scheme 4 

 

 

In 2006, Mohan et al. reported a three-step synthesis of isocryptolepine 3 in 28% 

overall yield involving an indole synthesis as the key step (Scheme 5). 

Scheme 5 
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Results and Discussion 

The most common approach involves organometallic coupling of substituted 

quinolines. We report herein a direct and distinctly different strategy. Our retrosynthetic 

analysis of intermediate 12 showed that it could be prepared in one pot by intermediate 13 by 

an intramolecular Wittig reaction. Keto amide 13 could be made by a coupling reaction using 

commercially available Wittig salt 14 (Scheme 6). The target molecule neocryptolepine (2) 

could be prepared by an aza-Wittig reaction as shown in Scheme 2.  

 

Scheme 6 

 

 

In our initial approach, the reaction of isatin with ethyl chloroformate  in THF with 

triethyl amine, followed by sodium carbonate, gave the acid 15 in 95% yield (Scheme 7). 

With the acid 15, Steglich-Hasser esterification with commercially available phosphonium 

salt 14, followed by an intramolecular Wittig reaction in the presence of potassium tert-
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butoxide, gave a very complex reaction. We also tried to prepare the acid chloride in-situ first 

and then couple it with phosphonium salt 14, followed the same intramolecular Wittig 

reaction, which also failed.  After careful study, we found that the intermediate 16 did not 

form under these conditions.    

Scheme 7

 

     

Instead of using the unstable intermediate 16, we decided to introduce an azide as the 

nitrogen source in the o-position because azides are generally stable groups under acid or 

base conditions. The new approach started from the known acid 18, which can easily be 

made from isatin in one step in 92% yield
20

 (Scheme 8). The acid chloride 19 was prepared 

from compound 18 by two different methods, one using oxalyl chloride in methylene 

chloride solution and the other using thionyl chloride. The resultant brown solid was directly 
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used for the next step without further purification. Condensation of (2-aminobenzyl) 

triphenylphosphonium bromide with compound 19 in methylene chloride, followed by 

intramolecular Wittig reaction with potassium tert-butoxide at room temperature, led to 

lactam 21 in 62% yield in 3 steps and one pot from compound 18. Methylation of 18 with 

methyl iodide in the presence of potassium carbonate in DMF gave the known intermediate 8 

in 98% yield. The overall yield of 8 was 60% over 4 steps in two pots comparing to the 22% 

yield over 9 steps shown in Scheme 2. Neocryptolepine (2) can be made in one step from 8 

using an intramolecular aza-Wittig reaction under microwave assisted conditions and 

isocryptolepine (3) can be made in two steps via nitrene insertion, followed by Red-Al 

reduction, according to the literature.
8
  

Scheme 8 
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In conclution, we have established a new, efficient and straightforward formal total 

synthesis of neocryptolepine 2 and isocryptolepin 3, employing the same intermediate 8, and 

using an intrameolecular Wittig reaction, followed by an aza-Wittig reaction in an excellent 

yield.   

 

Experimental 

OH

O O

NH

OO  

2-(2-(Ethoxycarbonylamino)phenyl)-2-oxoacetic acid (15): To a mixture of isatin 

(735 mg, 5 mmol) and Et3N (0.7 mL, 5 mmol) in 20 mL of dry THF, ethyl chloroformate 

(0.5 mL, 5 mmol) was added dropwise under argon. The temperature was kept below 30 
o
C 

during the addition. The resultant mixture was stirred at rt for 1 h and 20 mL of H2O was 

added, followed by Na2CO3 (1.06 g, 10 mmol). Then the reaction mixture was stirred at rt for 

45 min. The product was extracted twice with ethyl acetate and the combined organic layers 

were washed with brine. Evaporation of the solvent, followed by column chromatography, 

gave compound 15 (1.12 g, 95%) as light yellow solid; mp = 144-145 ºC; 
1
H NMR (400 

MHz, DMSO-d6) 10.26 (s, 1H), 8.02-8.04 (d, J = 8.0 Hz, 1H), 7.68-7.72 (m, 2H), 7.23-7.27 

(m, 1H), 4.12-4.17 (q, J = 7.2 Hz, 2H), 1.22-1.25 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, 

DMSO-d6): 191.6, 165.6, 153.9, 141.1, 136.3, 133.0, 123.4, 120.7, 120.6, 61.7, 14.8; HRMS 

electrospray (m/z) calcd for C11H11NO5, 237.0637; found, 237.0641. 



www.manaraa.com

51 

 

 

3-(2-Azidophenyl)quinolin-2-one (21): Method A: To a suspension of acid 18 (1.0 g, 

5.4 mmol) in 10 mL of benzene was added thionyl chloride (3.86 g, 32.4 mmol). The mixture 

was boiled with stirring for 1 h and was concentrated under reduced pressure. The residue 

was recrystallized from benzene to give acid chloride 19 as a brown solid.    

Method B: Oxalyl chloride (0.41 g, 3.24 mmol) was slowly added under an inert 

atmosphere to an ice cold solution of compound 18 (0.5 g, 2.7 mmol) in 5 mL of dry CH2Cl2. 

The resulting mixture was treated with a catalytic amount of DMF and allowed to react at rt 

for 3 h. The solvent and excess reagent were evaporated. The resultant brown solid was 

directly used in the next step without any purification.   

The acid chloride 19 (0.1 g, 0.48 mmol) was redissolved in 5 mL of CH2Cl2 and 

phosphonium salt 14 (0.214 g, 0.48 mmol) was added. The resulting mixture was stirred at rt 

for 12 h. The solvent was removed under a vacuum. THF (5 mL) was added to the resultant 

orange solid, followed slowly by 0.57 mL of a t-BuOK (1 M, 0.57 mmol) solution in THF at 

rt. After 5 h at rt, the reaction was quenched by the addition of an aqueous NH4Cl solution. 

The product was extracted twice with ethyl acetate and the combined organic layers were 

washed with brine. Evaporation of the solvent, followed by column chromatography, gave 

compound 21 (75 mg, 62% for 3 steps) as yellow powder; mp = 201-202 ºC; 
1
H NMR (400 

MHz, DMSO-d6) 11.94 (s, 1H), 7.91 (s, 1H), 7.68-7.70 (d,  J = 7.6 Hz, 1H), 7.47-7.54 (m, 

2H), 7.33-7.39 (m, 3H), 7.24-7.28 (m, 1H), 7.18-7.22 (t, J = 7.6 Hz, 1H); 
13

C NMR (100 
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MHz, DMSO-d6) 161.1, 140.0, 139.2, 138.4, 132.1, 130.9, 130.7, 130.0, 129.3, 128.6, 125.3, 

122.4, 119.54, 119.49, 115.3; HRMS electrospray (m/z) calcd for C15H10N4O, 262.0855; 

found, 262.0858. 

 

3-(2-Azidophenyl)-1-methylquinolin-2(1H)-one 8: To a mixture of compound 21 

(60 mg, 0.23 mmol) in 4 mL of dry DMF and anhydrous K2CO3 (191 mg, 1.38 mmol), 

methyl iodide (49 mg, 0.345 mmol) was added dropwise under argon. The resultant mixture 

was stirred at 60 
o
C for 8 h. The reaction was quenched by the addition of 10 mL of water. 

The product was extracted twice with ethyl acetate and the combined organic layers were 

washed with brine. Evaporation of the solvent, followed by column chromatography, gave 

compound 8 (62 mg, 98%) as yellow solid; mp = 168-170 ºC (Lit. mp = 169 ºC)
8
; 

1
H NMR 

(400 MHz, CDCl3) 7.67 (s, 1H), 7.54-7.58 (m, 2H), 7.34-7.42 (m, 3H), 7.16-7.25 (m, 3H), 

3.76 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 161.1, 140.0, 138.8, 138.6, 131.6, 130.7, 130.3, 

129.6, 129.0, 124.7, 122.3, 120.3, 118.6, 114.2, 30.0; HRMS electrospray (m/z) calcd for 

C16H12N4O, 276.1011; found, 276.1017. 
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CHAPTER 3. STUDIES TOWARDS THE TOTAL SYNTHESIS OF SALVINORIN A 

 

Introduction 

Over the past 30 years, there has been in-depth research into the biochemistry, 

pharmacology and biology of opioid receptors.
1-3

 Some alkaloids, like morphine and codeine, 

which can interact with opioid receptors, are important for modern medicine.
4
 Salvinorin A 

(1), a unique and selective κ opioid receptor agonist, was isolated in 1982 from the Mexican 

hallucinogenic plant Salvia Divinorum.
5-9

 Recent studies indicate that compound 1 has more 

potent hallucinogenic effects compared to other non-nitrogenous or nitrogenous opioid 

agonists, such as lysergic acid diethylamide  or tetrahydrocannabinol.
10-13

 Since they have 

little structure similarity and have a different mechanism of action than other classical opoid 

recptor ligands, compound 1 and its analogs, including eight congeners B-I and salvinicins A 

and B,
14-18

 are expected to be potential drug candidates and also offer opportunities to 

explore the role of the receptor systems in humans.   

 

 

Figure 1. Typical Salvinorin A Analogs 
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The biosynthesis of salvinorin A (1) has been proposed using early labeling 

experiments, involving the incorporation of [1-
13

C]glucose, [CH3-
13

C]methionine, and [1-

13
C;3,4-

2
H2]-1-deoxy-D-xylulose into its structure.

19 
(Figure 2). The geranyl pyrophosphate 

(4) results from the assembly of isopentenylpyrophosphate and dimethylallyl 

pyrophosphate.
20

 Cyclization, followed by methyl shifts by enzyme catalysis of 4, affords the 

labdanyl cation 5 and clerodane pyrophosphate 6, which upon oxidation, acetylation, and 

methylation provide salvinorin A (1).  

 

OPP

H

H

OPP OPP

H

O O

O

O
O

CO2Me

H

O

Salvinorin A, 1

H

4 5 6

 

Figure 2. Proposed Biosynthesis of Salvinorin A (1) 

 

In the past several years, salvinorin A (1) and it analogs have drawn much attention 

because of their significant biological activity and the challenging tricyclic core structure. 

The core includes seven asymmetric centers and five oxygenated functionalities. To date, 

only two total synthesis of 1 have been reported, while several semi-synthetic derivatives 

have been prepared and evaluated. 
21-24

 

In 2007, Evans et al. reported the first total synthesis of 1 in 33 steps, based on a 

transannular sequential Michael reaction from macrocyclic lactone 12, as their key step, to 

construct the tricylic core structure (Scheme 1).
22

 Initially, the aldehyde 9 was synthesized 
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from commercially available thiazolidinethione 7 in 13 steps. Vinylic iodide 10 was prepared 

by asymmetric reduction of ketone 8, followed by alkyne isomerization, carboalumination 

and protection in 4 steps.  

 

Scheme 1 
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The coupling reaction of a Grignard reagent from 10 and the aldehyde 9 afforded the 

allylic alcohol 11. Selective protection of secondary alcohol 11, followed by Shiina 

macrolactonizaion, desilylation and oxidation, in 6 steps, produced the macrocycle 12. The 

tricyclic core of 1 was accomplished by a transannular Michael reaction. Intermediate 12 was 

treated with TBAF at -78 
o
C and warmed to 5 

o
C to give a single diastereomer in excellent 

yield. Another 6 steps, involving deoxygenation and conjugate reduction, and finally 

epimerization completed construction of salvinorin A (1).  

Evans’ group completed the total synthesis of the target molecule by a unique 

synthetic strategy and this provides a new methodology to construct analogs of compound 1 

with similar polycyclic core structures.  

A recent report
24

 from Hagiwara’s group showed another total synthesis of salvinorin 

A (1) in 20 steps starting from the known Wieland-Miescher ketone 14 (Scheme 2). 

Reductive alkylation of 14 with lithium in liquid ammonia with ethyl iodoacetate gave 

intermediate 15 with three asymmetric centers. The next five steps included hydrolysis, 

Wittig reaction, LAH reduction and selective diol protection. This afforded the bis-olefin 16. 

Hydroboration, followed by PDC oxidation and epimerization with sodium methoxide, gave 

the thermodynamically stable bis-aldehyde 17. After three more steps, aldehyde 18 was 

achieved by protection and oxidation. Metal-halogen exchange between the bromofuran and 

t-BuLi and subsequent treatment with 18 yielded adduct 19.  Treatment of 19 with acid, 

followed by deprotection, oxidation and  esterification, afforded compound 20. Introduction 

of an α-acetoxy group in three steps completed the synthesis of salvinorin A (1).  
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Scheme 2 

 

 

Hagiwara’s synthetic route is straightforward and involves some interesting strategies, 

but some low yielding steps limit the practical use of this synthetic method for this family of 

analogs.  
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Results and Discussion    

In our initial approach, we envisioned forming the B ring from a commercially 

available A ring precursor (Figure 3). So our strategy focused on B ring formation involving i) 

an intermolecular or intramolecular Michael addition to form the bond α and ii) an SN2 

reaction to form the β bond.  

 

 

Figure 3. Structure Analysis of Salvinorin A (1) 

 

The following retrosythetic scheme (Scheme 3) suggests two possible pathways A 

and B, which could by an intramolecular Michael addition afford α bond and furnish the B 

ring. The intermediate 21 could be made via selective reduction of the internal triple bond to 

form the cis-double bond in alkyne 22 by hydrogenation. A Sonogashira coupling reaction of 

5,6-dihydro-pyran-2-one (23) with alkyne ester 26 would afford compound 22. The possible 

problem for pathway A is that the α,β-unsaturated pyran-2-one may not be a good Michael 

acceptor to furnish the B ring via an intramolecular Michael addition. To solve this problem, 

by an alternate pathway B, we planned to use an α,β-unsaturated ester as the Michael 

acceptor, followed by lactonization to produce compound 1. Similarly, the Sonogashira 
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coupling reaction of iodo compound 25 and 26, followed Lindlar hydrogenation, could give 

compound 24.  

 

Scheme 3 

 

         

 The first key intermediate is alkyne 26, which was obtained by a three-step 

procedure starting from commercially available 27. Michael addition of TMS-ethynyl 

dimethyl aluminum to the α,β-unsaturated cyclohexanone 27 using Ni(acac)2 and DIBALH 

conditions, followed by desilylation with potassium carbonate in ethanol gave a 60% 

isolation yield of the desired alkyne 26. One advantage of this starting compound 27 is that it 

has all the necessary functional groups of the A ring for target molecule 1, except the α-

acetoxy group at C2, which can be introduced later according to Hagiwara’s method.  

Another advantage is that the “allylic strain” between the 5-methyl and 4-ethyl ester will 
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afford the Michael addition product (cis for the 5-methyl and 4-ester), which perfectly 

matches the target molecule. 

 

Scheme 4 

 

         

The intermediate iodopyranone 23 was obtained in one step from a known compound, 

6- phenyl-5,6-dihydro-pyran-2-one, by iodination in carbon tetrachloride in 95% yield 

(Scheme 5). Unfortunately, the Sonogashira coupling reaction between compounds 26 and 23 

failed under several standard conditions. Instead of the desired alkyne 22, the self-coupling 

compound 29 and the oxidation product 30 were observed.  The self coupling reaction from 

the alkyne is always a by-product of Sonogashira coupling reactions. Compound 23 may not 

be stable under these conditions. However, 31 might be stable under the Sonogashira reaction 

conditions. Two conditions have been tried to prepare the iodopyrone 31 from 23. They are 

shown in Scheme 6. The first conditions only gave a 1:1 mixture of 31 and 30. Interestingly, 

if using 2 equivalents of NBS and a catalytic amount of benzoyl peroxide under boiling 

overnight, compound 31 is produced in a 95% yield. 
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Scheme 5 
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 Scheme 6 
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This time the Sonogashira coupling reaction between the alkyne 26 and iodo 

compound 31 worked very well. It gave the intermediate 32 in an excellent yield (Scheme 7).  

 

Scheme 7  

 

 

Selective hydrogenation of compound 32 in methanol produced 33 in a 78% yield 

(Scheme 8). With intermediate 33, the only step left was the reaction to form the B ring via 

an intramolecular Michael addition according to the analysis in Scheme 3. If this reaction 

worked, the tricyclic core of salvinorin A (1) would be produced very efficiently in 5 steps. 

Unfortunately, all attempted intramolecular Michael additions in the presence of various 

bases, t-BuOK in THF, DBU in THF or DMF and LDA in THF, were unsuccessful (Scheme 

9).  

 

Scheme 8 
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Scheme 9. 

 

 

It is possible that the α,β-unsaturated pyran-2-one may not be a good enough Michael 

acceptor to furnish the B ring by an intramolecular Michael addition. To activate the double 

bond on the unsaturated pyranone, we tried to prepare compound 35, in which the α,β-

unsaturated keto ester would be a much better Michael acceptor (Scheme 10). However, all 

reaction conditions examined gave complex results. It appears difficult to differentiate the 

internal triple bond from the double bond.  

 

Scheme 10 
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Next we tried to use the α,β-unsaturated ester as a Michael acceptor, to form the B 

ring. The intermediate was made as shown in Scheme 11. A Sonogashira coupling reaction of 

alkyne 26 with the known α-iodo ester 25 gave intermediate 36 in a 71% yield. 

Hydrogenation with Lindlar’s catalyst successfully generated compound 24 with an internal 

cis-double bond. With intermediate 24 in hand, an intramolecular Michael addition should 

furnish the B ring.   

 

Scheme 11 

 

 

Unfortunately, the attempted carbon-carbon bond formation by an intramolecular 

Michael addition in the presence of t-BuOK in THF was not successful (Scheme 12). Instead 

of the desired 1,4-addition product 37, we got the 1,2-addition product 38 in 83% yield. This 

shows that the α,β-unsaturated ester is still not a good enough Michael acceptor. All attempts 

to prepare compound 39 failed (Scheme 13). Interestingly, when compound 36 was treated  
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Scheme 12 

 

 

 

Scheme 13 
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with palladium chloride in DMSO and heat, furanone 40 was produced in a 72% yield. It is 

proposed that the ester was hydrolyzed first, followed by cyclization involving palladium 

assistance. 

In all previous reactions, the chiral center at C5 restricts the conformations available. 

To solve this problem, this bond should be made at an early stage of the synthesis as shown 

in the retrosynthetic analysis in Scheme 14. Intermolecular Micheal addition of the TMS enol 

silylether 42 and the known malonate 43 could form adduct 44. Hydroboration of the 

terminal double bond, selective reduction and tosylation or mesylation would give the 

intermediate 45. An intramolecular SN2 reaction should furnish the B ring and give the 

bicyclic core structure of salvinorin A (1). 

 

Scheme 14 
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A 1,4-addition of compound 27 with vinyl Grignard and copper iodide, followed by 

addition of TMS choride and triethylamine, provided the enol silyl ether 42 in a 90% yield 

(Scheme 15). 

 

Scheme 15 

 

 

With intermediate 42 in hand, several conditions were examined for an intermolecular 

Michael addition with compound 43 and the results are summarized in Table 1. Under TiCl4 

conditions, we did not get any of the desired compound 44 and only the de-silylated by- 

 

Table 1. Intermolecular Michael addition to form the α bond of B ring 

 

entry reagent solvent temperature (
o
C) time (h) yield (%) 

44 46 

1 TiCl4 CH2Cl2 -78 → 0 5 0 67 

2 TBAF THF RT 3 29 60 

3 CsF CH3CN RT 12 40 42 

4 CsF DMF RT 4 52 33 
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product 46 was obtained in a 67% yield. Under TBAF conditions, the desired compound 44 

was prepared in a 29% yield. The best yield obtained was 52% with 3 equivalents of CsF in 

DMF.  

 

Scheme 16.  

 

 

After the successful Michael addition, the next step was to explore the possibility of 

furnishing the B ring by an aldol reaction or SN2 reaction. There are two double bonds in the 

molecule. One is a terminal double bond and the other one is an internal double bond, which 

is conjugated with the phenyl group. It is believed that the terminal double bond is less 

hindered and more electron-deficient than the internal double bond. Several conditions were 

tried to differentiate these two alkenes. Treating compound 44 with phenylselenium bromide 

in acetonitrile and water gave a very complex reaction (Scheme 16). We also tried to 
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brominate the two double bonds at the same time, which also gave a messy reaction. 

Hydroboration of the terminal double bond with borane in THF, followed by oxidization with 

PCC, gave the desired aldehyde 49 in a 45% yield (Table 2). After optimization (entry 3, 

Table 2), the best yield was 75% based on recovered starting material (72% of the starting 

material was recovered). 

 

Table 2. Selective hydroboration of the terminal double bond 

 

entry Borane 

reagent 

equivalent temperature 

(
o
C) 

time 

(h) 

SM recovered 

(%) 

Yield
a
 

(%) 

1 BH3·THF 0.33 RT 3 34 45 

2 BH3·Me2S 0.33 RT 3 44 52 

3 dicyclohexyl

borane 

1.00  RT 12 72 75 

4 dicyclohexyl

borane  

2.00  RT 12 55 56 

5 dicyclohexyl

borane 

1.00 

 

RT→reflux 3→2 50 55 

a 
based on recovered starting material 

        

With compound 49 in hand, selective reduction of the aldehyde with a borane 

pyridine complex under DiMare’s conditions
25

 gave the desired alcohol 50 in a 78% yield 

(Scheme 17).  Mesylation of compound 50 gave mesylate 51 in a 83% yield. 
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Scheme 17 

 

 

Due to the steric hinderance in mesylate 51, the desired bicyclic compound 52 was 

formed in only a 26% yield and the by-product 53 was formed in a 61% yield, when treated 

with DBU in THF (Scheme 18). It is believed that the formation of 53 results from a retro-

Michael addition via intermediate 54 (Scheme 19).  

 

Scheme 18 
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Scheme 19 

 

 

Protection of the ketone as an enol would avoid the retro-Michael addition. An 

intramolecular SN2 reaction should then give the bicyclic intermediate 56 (Scheme 20). The 

lactone ring C should be realized in several additional steps.  

 

Scheme 20 
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In conclusion, two synthetic routes to the highly funtionalized bicyclic core skeleton 

of salvorin A (1) have been achieved. The Sonogashira coupling of an alkyne intermediate 

with iodo alkenes has provided some advanced intermediates with an A ring and a C ring. 

The second route to compound 1 using an intermolecular Michael addition and 

intramolecular SN2 reaction formed the important B ring. Lactonization should give the 

tricyclic core structure of salvorin A (1).  

 

 

Experimetal 

All 
1
H and 

13
C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 

MHz respectively. All melting points are uncorrected. Unless as otherwise indicated, all 

reactions were carried out under argon. Thin layer chromatography was performed using 

commercially prepared 60-mesh silica gel plates (Whatman K6F), and visualization was 

effected with short wavelength UV light (254 nm). High resolution mass spectra were 

recorded on a Kratos MS50TC double focusing magnetic sector mass spectrometer using EI 

at 70 eV. All reagents were used directly as obtained commercially unless otherwise noted. 

All yields reported represent an average of at least two independent runs. 

 

 

3-Iodo-6-phenyl-5,6-dihydro-pyran-2-one (23) 
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A mixture of compound 33 ( 0.09 g, 0.3 mmol), NBS (0.107 g, 0.6 mmol) and 

benzoyl peroxide (0.007 g, 0.03 mmol) in 8 mL of CCl4 under the argon was boiled 

overnight (12 h). The reaction was concentrated, followed by column chromatography of the 

residue using ethyl acetate: hexanes = 1:2, to give compound 13 (89 mg, 100%) as a white 

solid; mp = 130-132 °C; 
1
H NMR (400 MHz, CDCl3) 7.60-7.62 (dd, J = 6.4, 2.8 Hz, 1H), 

7.34-7.41 (m, 5H), 5.50-5.54 (dd, J = 12.0, 4.0 Hz, 1H), 2.57-2.80 (m, 2H); 
13

C NMR (100 

MHz, CDCl3) 160.2, 153.9, 137.5, 129.0, 128.9, 126.2, 89.6, 80.0, 35.6. MS electrospray 

(m/z): 300. 

 

 

Ethyl 2-ethynyl-2-methyl-4-oxocyclohexanecarboxylate (26) 

To 0.71 g (7.23 mmol) of trimethylsilyl acetylene in 20 mL of dry diethyl ether at -40 

o
C was added 2.9 mL (7.23 mmol) of a 2.5 M solution of n-BuLi in hexane slowly. The 

reaction mixture was allowed to stir at -40 
o
C for 1.5 h and then cannulated dropwise into 

7.23 mL (7.23 mmol) of a 1.0 M solution of dimethylaluminum chloride in ether at rt. The 

reaction mixture was allowed to stir for 3.5 h at rt and then filtered to remove the LiCl 

precipitate.   

To 0.186 g (0.723 mmol) of Ni(acac)2 in 30 mL of ether at 0 
o
C was added 0.66 mL 

of a 1.0 M solution of DIBAH (0.66 mmol) in toluene. Then the solution of dimethyl TMS 

acetylene aluminum in ether (7.23 mmol), prepared previously, was added to this red-brown 

reaction mixture. The temperature of the reaction mixture was lowered to -5 
o
C, and 0.6 g 
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(3.29 mmol) of ethyl 2-methyl-4-oxo-2-cyclohexenecarboxylate in 20 mL of ether was added 

dropwise over 15 min to the reaction mixture. The reaction mixture was allowed to stir at -5 

o
C for 5 h and was hydrolyzed with saturated aqueous KH2PO4. Enough 10% aqueous H2SO4 

was added to dissolve the Al salts. The organic layer was separated, extracted with ether, 

washed with saturated aqueous NaHCO3 and saturated aqueous NaC1, dried with Na2SO4, 

filtered, and rotary evaporated. The crude product 28 (0.66g, yield 71%) was used for next 

step without any further purification.  

To a solution of compound 28 (202 mg, 0.72 mmol) in 15 mL of ethanol, 0.5 g of 

potassium carbonate (3.6 mmol) was added at rt. The mixture was stirred for 4 h, diluted with 

water and extracted with ether. The combined organic phases were dried, concentrated and 

purified by silica gel chromatography, yielding 26 (127 mg, 85% yield) as a yellow oil; 
1
H 

NMR (400 MHz, CDCl3) 4.16-4.25 (m, 2H), 2.93-2.97 (dd, J = 14.0, 0.8 Hz, 1H), 2.86-2.88 

(t, J = 4.8Hz, 1H), 2.58-2.63 (m, 1H), 2.30-2.45 (m, 3H), 2.29 (s, 1H), 2.09-2.16 (m, 1H), 

1.37 (s, 3H), 1.28-1.32 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3): 208.4, 172.8, 87.4, 

71.8, 60.8, 50.9, 47.7, 37.4, 37.2, 25.5, 25.4, 14.3; MS electrospray (m/z): 208. 

 

 

3-Iodo-6-phenyl-pyran-2-one (31) 

A mixture of compound 23 (0.09 g, 0.3 mmol), NBS (0.107 g, 0.6 mmol) and benzoyl 

peroxide (0.007 g, 0.03 mmol) in 8 mL of CCl4 under the argon was boiled overnight. The 

reaction was concentrated, followed by column chromatography of the residue using 1:2 
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ethyl acetate: hexanes, to give compound 31 (89 mg, 100%) as white solid; mp = 130-132 °C; 

1
H NMR (400 MHz, CDCl3) 7.77-7.82 (m, 3H), 7.43-7.49 (m, 3H), 6.57-6.59 (d, J = 7.6 Hz, 

1H); 
13

C NMR (100 MHz, CDCl3) 160.6, 158.4, 145.1, 131.3, 130.6, 129.1, 125.6, 109.8, 

101.6; MS electrospray (m/z): 298. 

 

 

Ethyl 2-methyl-4-oxo-2-[(2-oxo-6-phenyl-pyran-3-yl)ethynyl]- cyclohexanecarboxylate 

(32) 

To the mixture of the lactone 31 (0.052 g, 0.174 mmol), Pd(PPh3)2Cl2 (0.004 g, 

0.0052 mmol), and CuI (0.001 g, 0.0052 mmol) in 1.7 mL of DMF, diisopropylamine (0.098 

mL, 0.70 mmol) was added at rt under an argon atmosphere. Then the mixture was warmed 

to 70 °C over 10 min. After 5 min at 70 °C, the compound 26 (0.036 g, 0.174 mmol) in 1.7 

mL of DMF was added to the reaction mixture over 10 min and stirring was continued for 4 h. 

The reaction was quenched by the addition of water at rt. The product was extracted twice 

with ethyl acetate and the combined organic layers were washed with brine. Evaporation of 

the solvent, followed by column chromatography of the residue using ethyl acetate: hexanes 

= 1:3, gave compound 32 (57 mg, 87%) as pale yellow solid; mp = 114-116 °C; 
1
H NMR 

(400 MHz, CDCl3) 7.74-7.76 (m, 2H), 7.39-7.46 (m, 4H), 6.62-6.64 (d, J = 7.2 Hz, 1H), 

4.14-4.20 (m, 2H), 2.97-3.01(m, 2H), 2.30-2.64 (m, 4H), 2.10-2.14 (m, 1H), 1.40 (s, 3H), 

1.24-1.28 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) 208.4, 172.8, 160.5, 145.9, 131.2, 
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130.8, 129.4, 125.7, 110.0, 101.2, 99.5, 78.2, 77.5, 77.2, 76.9, 60.8, 50.7, 47.6, 38.2, 37.5, 

25.5, 2.3, 14.3; MS electrospray (m/z): 378. 

 

 

Ethyl 2-methyl-4-oxo-2-[2-(2-oxo-6-phenyl-pyran-3-yl)ethyl]- cyclohexanecarboxylate 

(33) 

A dried round bottom flask with a stirring bar was charged with 10% Pd/C (0.03 g, 

0.03 mmol), compound 32 (0.060 g, 0.16 mmol) and 1.6 mL of methanol, flushed with 

hydrogen and a hydrogen balloon added though a septum.  After 10 min at room temperature, 

the reaction was quenched by filtration through a pad of Celite. Evaporation of the solvent, 

followed by column chromatography of the residue using ethyl acetate: hexanes = 1:2, gave 

compound 33 (43 mg, 72%) as colorless oil; 
1
H NMR (400 MHz, CDCl3) 7.79-7.81 (m, 2H), 

7.43-7.45 (m, 3H), 7.20-7.22 (d, J = 6.8 Hz, 1H), 6.60-6.62 (d, J = 6.8 Hz, 1H), 4.16-4.22 (m, 

2H), 2.79-2.82 (t, J = 6.0 Hz, 1H), 2.27-2.63 (m, 6H), 2.12-2.17 (m, 2H), 1.61-1.63 (m, 2H), 

1.08 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 210.5, 173.7, 162.8, 15.8, 139.2, 131.4, 130.5, 

129.0, 127.3, 125.3, 101.2, 60.6, 51.5, 47.5, 40.4, 39.2, 38.9, 24.8, 24.6, 22.0, 14.4; MS 

electrospray (m/z): 382. 
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Ethyl 2-((3E,5E)-3-(ethoxycarbonyl)-6-phenylhexa-3,5-dien-1-ynyl)-2-methyl-4-

oxocyclohexanecarboxylate (36) 

To the mixture of the cinnamyl ester 25 (0.125 g, 0.38 mmol), Pd(PPh3)2Cl2 (0.008 g, 

0.0114 mmol), and CuI (0.002 g, 0.0114 mmol) in 3.0 mL of DMF, diisopropylamine (0.213 

mL, 1.52 mmol) was added at room temperature under an argon atmosphere. Then the 

mixture was warmed up to 70 °C over 10 min. After stirring for 5 min at 70 °C, the 

compound 26 (0.079 g, 0.38 mmol) in 3.0 mL of DMF was added to the reaction mixture 

over 10 min and stirring was continued for 4 h. The reaction was quenched by the addition of 

water at room temperature. The product was extracted twice with ethyl acetate and the 

combined organic layers were washed with brine, and dried over Na2SO4. Evaporation of the 

solvent, followed by column chromatography of the residue using ethyl acetate: hexanes = 

1:7, gave compound 36 (103 mg, 67%) as a yellow oil.  

 

 

Ethyl 2-((1Z,3E,5E)-3-(ethoxycarbonyl)-6-phenyl-hexa-1,3,5-trienyl)-2-methyl-4-

oxocyclohexanecarboxylate (24) 
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A dried round bottom flask with a stirring bar was charged with 0.013 g (0.006 mmol) 

of Pd/BaSO4 and a drop of quinoline in 5 mL of diethyl ether. After flushing with H2, 

compound 36 in 1 mL of diethyl ether was introduced. After stirring overnight with a H2 

balloon on top of the flask, the solvent was evaporated and then 10 mL of ethyl acetate was 

added. The organic layer was washed with 10 mL of 1 N hydrochloric acid solution, 

followed by 20 mL of saturated aqueous NaHCO3, and then 20 mL of saturated aqueous 

NaC1, and dried over Na2SO4. The reaction mixture was concentrated, followed by column 

chromatography of the residue using ethyl acetate: hexanes = 1:7, gave compound 24 (40 mg, 

80%) as yellow oil; 
1
H NMR (400 MHz, CDCl3) 7.49-7.50 (d, J=7.2 Hz, 2H), 7.29-7.38 (m, 

4H), 6.90-7.05 (m, 2H), 6.01-6.04 (d, J=12.8 Hz, 1H), 5.70-5.73 (d, J = 12.8 Hz, 1H), 4.23-

4.28 (q, J = 7.2 Hz, 2H), 4.11-4.17 (q, J = 7.2 Hz, 2H), 2.84-2.87 (m, 1H), 2.44-2.54 (m, 3H), 

2.07-2.27 (m, 3H), 1.14-1.36 (m, 6H), 1.09 (s, 3H); 
13

C NMR (100 MHz, CDCl3) 209.5, 

173.2, 166.8, 140.5, 140.2, 136.3, 129.1, 128.9, 128.8, 127.4, 124.8, 122.7, 61.0, 60.5, 51.4, 

49.3, 43.6, 38.7, 24.7, 21.9, 14.4, 14.3; MS electrospray (m/z): 410. 

 

 

(E)-Ethyl-8a-methyl-4,5-dioxo-6-((E)-3-phenylallylidene) octahydronaphthalene-1-

carboxylate (38) 

To the solution of compound 24 (0.035 g, 0.085 mmol) in 1 mL of THF, 0.043 mL of 

t-BuOK in THF (1 M, 0.043 mmol) was added at rt. The color of the mixture changed from 

colorless to bright yellow. After 1 h at rt, the reaction mixture was concentrated. Redesolved 
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in 10 mL of EtOAc and washed with 10 mL of saturated NH4Cl and brine and dried over 

MgSO4.  Evaporation of the solvent, followed by column chromatography of the residue 

using ethyl acetate: hexanes = 1:2, gave compound 38 (43 mg, 72%) as yellow oil; 
1
H NMR 

(400 MHz, CDCl3) 7.50-7.52 (d, J = 8.0 Hz, 2H), 7.35-7.39 (m, 2H), 7.22-7.32 (m, 3H), 

6.93-6.96 (d, J = 13.2 Hz, 1H), 6.71-6.74 (d, J = 10.4 Hz, 1H), 6.08-6.10 (d, J = 10.4 Hz, 1H), 

4.21-4.26 (m, 2H), 2.56-2.77 (m, 4H), 2.25-2.37 (m, 1H), 2.04-2.06 (m, 1H), 1.27-1.33 (m, 

3H), 1.22 (s, 3H); MS electrospray (m/z): 364. 

 

 

Ethyl 2-methyl-4-oxo-2-((E)-5-oxo-4-[(Z)-3-phenylallylidene)-4,5-dihydrofuran-2-yl]-

cyclohexanecarboxylate (40) 

To a solution of compound 36 (0.062 g, 0.155 mmol) in 3 mL of DMSO, palladium 

chloride (0.004g, 0.0155 mmol) was added at rt. The reaction mixture was warmed to 80 
o
C. 

After 6 h at 80 
o
C, the resulting mixture was filtered to remove the insoluble catalyst. EtOAc 

was added and the mixture was washed by brine and dried over MgSO4.  Evaporation of the 

solvent, followed by column chromatography of the residue using ethyl acetate: hexanes = 

1:3, gave compound 40 (43 mg, 72%) as a colorless oil; 
1
H NMR (400 MHz, CDCl3) 7.53-

7.55 (m, 2H), 7.36-7.43 (m, 2H), 7.15-7.18 (m, 1H), 7.05-7.07 (m, 2H), 6.14 (s, 1H), 4.10-

4.21 (m, 2H), 3.27-3.30 (m, 1H), 2.61-2.77 (m, 3H), 2.35-2.42 (m, 1H), 2.05-2.15 (m, 1H), 

1.35 (s, 3H), 1.22-1.25 (t, J = 7.2 Hz, 3H); MS electrospray (m/z): 380.  
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Ethyl 2-methyl-4-(trimethylsilyloxy)-2-vinylcyclohex-3-enecarboxylate (42) 

At a room temperature slurry of CuI (210 mg, 1.098 mmol) in 20 ml of THF was 

added 2.5 mL of TMEDA (16.4 mmol) and stirred until homogeneous. The solution was 

cooled to -78 
o
C, 11 mL of vinylmagnesium bromide in THF (1.0 M, 11 mmol) was added 

dropwise, and the mixture was then stirred for an additional 10 min. A solution of enone 27 

(1.00 g, 5.49 mmol) in 40 mL of THF was added dropwise by a cannula, and the solution was 

allowed to stir for 10 min further. A mixture of freshly distilled TMSCl and Et3N (1:1 v/v, 

5.5 mL) was centrifuged; the supernatant was transferred to the reaction mixture. After 5 min 

at -78 
o
C, the dry ice bath was replaced with an ice-water bath. The mixture was stirred until 

TLC analysis showed complete reaction (usually after 1-3 h). The reaction was quenched by 

adding 50 mL of EtOAc and 50 mL of aqueous NH4OH. The combined organic solutions 

were washed with brine, dried over MgSO4, filtered, and concentrated. Chromatography 

afforded 42 (1.33 g, 86% yield) as a colorless oil; 
1
H NMR (400 MHz, CDCl3) 5.81-5.88 (q, 

J = 6.8 Hz, 1H), 4.93-4.98 (m, 2H), 4.54 (s, 1H), 4.02-4.13 (m, 2H), 2.33-2.37 (m, 1H), 1.78-

2.03 (m, 4H), 1.18-1.21 (t, J = 7.2 Hz, 3H), 1.04 (s, 3H), 0.16 (s, 9H); 
13

C NMR (100 MHz, 

CDCl3) 173.8, 149.7, 147.5, 111.8, 59.9, 48.8, 40.5, 28.6, 22.5, 22.0, 14.3, 0.3; MS 

electrospray (m/z): 282. 
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Dimethyl 2-[(E)-1-(3-(ethoxycarbonyl)-2-methyl-6-oxo-2-vinylcyclohexyl)-3-

phenylallyl]malonate (44) 

To the mixture of compound 42 (0.282 g, 1.00 mmol) and malonate 43 (0.295 g, 1.20 

mmol) in 10 mL of DMF at room temperature, CsF (0.453 g, 3 mmol) was added in 3 

portions over 2 h. After 4 h at rt, the reaction mixture was poured into 50 mL of ice water. 

The combined aqueous phases were extracted three times with EtOAc. The combined 

organic solutions were washed with brine, dried over MgSO4, filtered, and concentrated. 

Chromatography afforded 44 (0.237 g, 52% yield) as a pale oil; 
1
H NMR (400 MHz, CDCl3) 

7.22-7.32 (m, 5H), 6.44-6.48 (d, J = 16.0 Hz, 1H), 6.08-6.15 (m, 1H), 5.56-5.64 (q, J = 6.8 

Hz, 1H), 4.99-5.03 (m, 2H), 4.18-4.21 (m, 2H), 3.88-3.90 (d, J = 7.6 Hz, 1H), 3.69 (s, 3H), 

3.53-3.56 (m, 1H), 3.10-3.13 (m, 1H), 2.87-2.91 (d, J = 14.4 Hz, 1H), 2.63 (s, 1H), 2.46-2.49 

(d, J = 14.4 Hz, 1H), 2.08-2.09 (m, 1H), 1.82-1.85 (m, 1H), 1.25-1.32 (m, 3H), 1.09 (s, 3H). 

MS electrospray (m/z): 456. 
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Dimethyl 2-[(E)-1-(3-(ethoxycarbonyl)-2-methyl-6-oxo-2-(2-oxoethyl)cyclohexyl)-3-

phenylallyl]malonate (49) 

To a solution of borane dimethyl sulfide complex (0.03 g, 0.40 mmol) in 5 mL of 

THF, cyclohexene (0.08 mL, 0.80 mmol) was added at 0 
o
C. After 1 h at 0 

o
C, compound 44 

(0.182 g, 0.40 mmol) in 2 mL of THF was added to the reaction mixture and slowly warmed 

to room temperature. After 12 h, the solvent was removed and 5 mL of methylene chloride 

was added, followed by PCC (0.258g, 1.20 mmol). The reaction mixture was boiled for 4 h. 

After cooling the solution down to rt, 10 mL of water was added to quench the reaction. The 

aqueous phases were extracted three times with CH2Cl2. The combined organic solutions 

were washed with brine, dried over MgSO4, filtered, and concentrated. Chromatography 

afforded 44 (0.041 g, 82% yield based on starting material recovered) as a pale oil and 

recovered 0.134 g of compound 44. 

 

 

Dimethyl 2-[(E)-1-(3-(ethoxycarbonyl)-2-(2-hydroxyethyl)-2-methyl-6-oxocyclohexyl) -

3-phenylallyl) malonate (50) 

To a solution of aldehyde 49 (0.472 g, 1.00 mmol) in 5 mL of methylene chloride 

under an inert atmosphere, glacial acetic acid (0.06 mL, 1.00 mmol) and pyridine-borane 

complex (0.05 mL, 0.50 mmol) were added at rt and the reaction was stirred for 3 h. 

Concentration of the reaction mixture and chromatography afforded alcohol 50 (0.37 g, 78%) 
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as a colorless oil; 
1
H NMR (400 MHz, CDCl3) 7.21-7.35 (m, 5H), 6.48-6.52 (d, J = 16.0 Hz, 

1H), 6.15-6.22 (m, 1H), 4.14-4.21 (m, 2H), 3.87-3.89 (d, J = 6.0 Hz, 1H), 3.71-3.75(m, 1H), 

3.69 (s, 3H), 3.70 (s, 3H), 3.40-3.46 (m, 1H), 3.17-3.22 (m, 1H), 2.79-2.83 (d, J = 13.6 Hz, 

1H), 2.72-2.75 (t, J = 4.4 Hz, 1H), 2.27-2.30 (d, J = 13.6 Hz, 1H), 2.11-2.17 (m, 1H), 1.86-

1.92 (m,1H), 1.62 (s, 1H), 1.52-1.58 (m, 2H), 1.26-1.32 (m, 3H), 1.05 (s, 3H); MS 

electrospray (m/z): 474. 

 

 

Ethyl 6,6-dimethyl-8-methyl-4-oxo-5-styryloctahydronaphthalene-tricarboxylate (52) 

To the solution of mesylate 51 (0.552 g, 1.00 mmol) in 10 mL of THF, 1,8-

diazabicyclo[5.4.0]undec-7-ene (0.178 mL, 1.20 mmol) was added under an inert atmosphere. 

After boiling for 12 h, 20 mL of saturated aqueous ammonium chloride solution was added at 

rt to quench the reaction. The aqueous phases were extracted twice with ethyl acetate. The 

combined organic solutions were washed with brine, dried over MgSO4, filtered, and 

concentrated. Chromatography afforded 52 (0.12 g, 26%) as a clear oil; 
1
H NMR (400 MHz, 

CDCl3) 7.20-7.35 (m, 5H), 6.47-6.51 (d, J = 15.6 Hz, 1H), 6.23-6.30 (m, 1H), 4.11-4.19 (m, 

2H), 3.88-3.90 (d, J = 6.0 Hz, 1H), 3.73 (s, 3H), 3.63 (s, 3H), 3.36-3.40 (m, 1H), 2.81-2.86 

(m, 1H), 2.57-2.62 (m, 1H), 2.14-2.18 (m, 1H), 1.89-2.04 (m, 3H), 1.75-1.80 (m, 1H), 1.41-

1.57 (m, 2H), 1.25-1.32 (m, 3H), 0.99 (s, 3H); MS electrospray (m/z): 456. 
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CHAPTER 4. SYNTHETIC APPROACH TOWARDS METHYLLYCACONITINE 

 

Introduction 

Diterpenoid alkaloids derived from Delphinium species have a long history of being 

used as medicines, poisons and insecticides.
1
 Methyllycaconitine (1) (Figure 1) is the 

principle toxic alkaloid in Delphinium brownii,
2
 a cattle-stock poison in the western United 

States and it has been also reported in at least thirty different Delphinium species as well as 

in Consolida ambigua and Inaularoyaleana.
3,4

 When employed in pharmacological studies, 

methyllycaconitine was found to be a very potent inhibitor of the nicotinic acetylcholine 

receptor (nAChR) binding in the mammalian and insect neural membranes. It also displayed 

remarkable selectivity toward neuronal [125I]-α-bunarotoxin binding sites in the mammalian 

brain.
5
 Its high activity and selectivity as an nAChR antagonist have led to extensive use of 

methyllycaconitine (MLA) (1) as a radiolabel for distinguishing nicotinic acetylcholine 

receptor subtypes.
6
 This selectivity of MLA has become even more important, since it has 

been suggested that these receptors might be implicated in Alzheimer’s disease.
7
   

 
 

 

Figure 1. Representative alkaloids of the Delphinium species 
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Structure–activity analysis has indicated that the succinyl anthranilate ester moiety at 

C18 (Figure 2) affects alkaloid binding with neuronal nicotinic acetylcholine receptors. The 

substituent at C14 determines the potency and the mechanism of the nAChR blockade at 

neuromuscular synapses.
8
 MLA (1) displays about 10

3
 times more inhibition of α-

bungarotoxin binding than its unsubstituted alkaloid lycoctonine (2).
9
  

 

 

Figure 2. Structure of methyllycaconitine 1 

 

A number of synthetic approaches to structurally less complex analogs of MLA have 

been reported, including the synthesis of the E,
10

 ABE,
11

 AEF,
12

 ABCD,
13

 ABDE
14

 and 

ABEF
15

 ring systems, some of which display significant biological activities.
16,17

  One of the 

syntheses of the norditerpenoid alkaloids by Van der Bann and co-workers led to an efficient 

construction of the ABCD ring system (Scheme 1).
13
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Scheme 1 

 

 

The synthesis of the substituted bicycle [3.2.1] octane derivative started from 7-tert-

butoxynorbornadiene (3), which led to an efficient synthesis of the enamino ester 4. This 

compound was then converted to 6, which contained the necessary BCD ring system by a 

ring expansion.  After the synthesis of the β-keto ester 7 in an additional 7 steps, Michael 

addition with benzyl acrylate provided compound 8. After five more steps, compound 9 was 

produced in a high yield. This synthesis used a unique synthetic strategy to make the ABCD 

ring system. However, the inability to make the biologically significant E and F rings limits 

the practical application of this approach. 

In 1998, Kraus and Dneprovskaia reported a direct approach for the synthesis of the 

ABE tricyclic segment by a novel tandem Michael addition-Mannich reaction sequence 

(Scheme 2).
11

 The known diketone 11
18

 was obtained by a three-step procedure starting from 
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cyclohexanone. Selective protection of enone 11 by trimethylsilyl triflate, followed by 

carboxylation of the A-ring with LDA and methyl cyanoformate, provided the β-keto ester 

enone 13. Treatment of enone 13 with ethylamine and formaldehyde in methanol furnished 

the tricyclic ABE segment by a tandem Michael addition-Mannich reaction. Unfortunately, 

the unusual inertness of the carbonyl group on the one carbon bridge to a variety of 

nucleophiles prevented continuation to the ABEF ring system.  

 

Scheme 2 
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A recent report from Kraus’s group described a direct synthetic route to the ABEF 

segment of methyllycaconitine (1) using an intramolecular anionic spiro cyclization (Scheme 

3).
15

 The synthesis began with 3-aminophenol, which can be converted to aldehyde 17 in 5 

steps. Condensation of aldehyde 17 with dimethyl malonate provided lactam 18 by a diester 

intermediate, which cyclized to form the lactam before Boc deprotection. Conjugate addition 
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of a vinylcuprate, followed by alkylation with 1,3-dibromopropane provided the vinyl lactam 

19 with the desired stereochemistry. The ABE intermediate 20 was achieved in another 4 

steps through ozonolysis, deprotection, followed by cyclization using 18-crown-6 ether and 

sodium hydride. After the two double bonds were reduced separately via hydrogenation and 

Li/NH3 reduction, the final ABEF ring system 22 was generated by treating intermediate 21 

with 4N HCl in THF. 

      

Scheme 3 
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As shown in Scheme 4, the strategy for formation of the E ring used an 

intramolecular aldol condensation via aldehyde 23 to form the key carbon-carbon bond and 

to generate the correct stereochemistry at C8.  

 

Scheme 4 

 

 

Results and Discussion 

In our approach, the idea was to combine both Dneprovskaia’s and Sarathy’s work. In 

Dneprovskaia’s synthesis (Scheme 2), the ABE tricyclic ring segment 15 could be efficiently 

achieved in 3 steps from a known diketone in high yield. If one carbon extension is realized 

at C6 to form aldehyde 24 (Scheme 5), the F ring could be incorporated by an intramolecular 

aldol reaction similar to the idea shown in Scheme 4.   
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Scheme 5         
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Although this looked straightforward, the unusual inertness of the carbonyl group at 

C6 to a variety of nucleophiles prevented elaboration to the ABEF ring system. This carbonyl 

group proved to be unreactive with several phosphorous and sulfur yilids, even with some 

that are useful with sterically hindered ketones (Scheme 6).  

 

Scheme 6. 
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Because of the steric hindrance of the bridged carbonyl group, the less hindered 

ketone was selectively protected as a ketal in 95% yield (Scheme 7). Interestingly, when 

ketal 28 was treated with a vinyl Grignard, around 10% of compound 29 was separated. 

Similarly, around 10% of compound 30 was formed with the lithium anion of trimethylsilyl 

acetylene. It is believed that the ester group interferes with the nucleophilic addition process 

and affects the reactivity of the ketone at C6.  

 

Scheme 7 

 

 

Based on these experiments, our strategy was to reduce the ester group to a primary 

alcohol in order to encourage reaction with the ketone at C6. The synthesis of ketone 33 

commenced with the LAH reduction of ester 28, which afforded the diol 31 in a quantitative 

yield (Scheme 8). Selective protection of the primary alcohol with tert-butyl dimethylsilyl 

chloride and imidazole, followed by a Swern oxidation gave ketone 33 in an excellent yield.   
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Scheme 8.   
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With ketone 33 in hand, several nucleophiles such as the lithium anion of 

trimethylsilyl acetylene, vinyl Grignard and vinyl lithium were then examined. The ketone at 

C6 reacted well with all of these nucleophiles except the vinyl Grignard. With vinyl lithium, 

which was prepared insitu from tetravinyltin and n-butyl lithium, the adduct 35 was produced 

in a 92% yield. It is believed that the aldehyde 24 in Scheme 5 could be achieved via 

ozonolysis of the terminal double bond. Then the F ring could be generated by an 

intramolecular aldol condensation.   

 

 

 

 

 

 



www.manaraa.com

97 

 

Scheme 9. 
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Direct ozonolysis of 35 with trifluoroacetic acid, followed by dimethyl sulfide gave a 

complex reaction (Scheme 10). The allylic alcohol was protected before the ozonolysis. 

Methylation of the tertiary alcohol gave some interesting results. Besides the desired 

compound 36, alcohol 37 was also generated in a 43% yield as a clear crystalline solid. An 

X-ray analysis of 37 showed that the stereochemistry at C6 of adduct 35 is the opposite of 

what was desired.  

 

Scheme 10. 
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X-ray analysis 
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A detailed stereochemical analysis of the nucleophlic addition is shown in Scheme 11. 

In the tricyclic compound 33, it is believed that the α-face is less hindered than the β-face. So 

only adduct 35 is formed. This is the opposite of what was desired. The β-face adduct is 

needed to furnish the F ring. However, if the enol ether 38 could be made, theoretically, 

oxidation with MCPBA would attack from the less hindered α-face to form aldehyde 40 with 

the desired stereochemistry. Then the ABEF compound 41 could be made by an 

intramolecular aldol reaction. 

 

Scheme 11 

 

 

The Wittig reaction of compound 33 with methoxymethylene triphenylphosphorane 

afforded the desired enol ether 38 as two isomers in excellent yield (Scheme 12). Based on 

NOE studies, the E isomer 38a is the major component, possibly because of steric hinderance 

from the bulky tert-butyldimethylsilyl group.  
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Scheme 12 

 

 

With enol ether 38 in hand, the next task was conversion of 38 to the corresponding 

aldehyde with the desired stereochemistry. Hydrolysis of the enol ether 38 with 4N 

hydrochloride acid in THF gave only compound 43, instead of the desired aldehyde 42 

(Scheme 13). MCPBA oxidation, followed by hydrolysis with 4N HCl also  

 

Scheme 13 

 

did not provide the desired triol 44, but gave an undesired lactol 45 in a 72% yield.  A 

detailed mechanistic analysis of how compound 45 might be formed is shown in Scheme 14. 

According to this analysis, after the epoxide 39 is formed by MCPBA oxidation, the 
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aldehyde 40 is produced by hydrolysis under the acidic conditions. However, the TBS group 

is also cleaved by the strong acid and the lactol 47 is formed instead.  

 

Scheme 14 

 

All efforts to open the lactol ring under a variety of different conditions failed 

(Scheme 15). Oxidation with PCC to lactone 50 also gave a complex reaction.  

 

Scheme 15 
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With these disappointing results, it was decided to change the acid sensitive TBS 

group to a benzyl group (Scheme 16). Alcohol 54, obtained from diol 31 in a 90% yield by 

selective protection of the primary alcohol with benzyl bromide, was converted into ketone 

55 using a Swern oxidation in a 75% yield.   

 

Scheme 16 
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A Wittig reaction of compound 55 afforded the desired enol ether 56 as two isomers 

in excellent yield. Hydrolysis of the enol ether with concentrated hydriodic acid in acetic acid 

gave aldehyde 57 in a 56% yield.  However, the reaction failed to furnish the F ring to give 

alcohol 58 either under acidic, basic or Lewis acid conditions (Scheme 17).  
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Scheme 17 

 

 

Based on the NOE studies, it is believed that compound 57b with the “R” 

configuration at C6 is the major component. The “S” configuration (57a) is needed to furnish 

the F ring (Scheme 18).  
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At this stage, it is believed that oxidation of the less hindered face will give the right 

stereochemistry at C6. Instead of an intramolecular aldol reaction, an SN2 reaction could be 

applied to form the key carbon-carbon bond and avoid the retro-aldol reaction (Scheme 19). 

The synthesis started from previously prepared enol ether 56. Oxidation of 56 with MCPBA, 

followed by acid hydrolysis, afforded aldehyde 59 in a 69% yield. The alcohol 61 was 

achieved by benzylation, followed NaBH4 reduction, from aldehyde 60 in an excellent yield 
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over two steps. Mesylation of 61 with mesyl chloride and triethyl amine gave the desired 

compound 62 in a 95% yield. Unfortunately, all attempts to prepare compound 63 using a 

variety of different bases, like t-BuONa, t-BuOK and DBU in THF, were unsuccessful.  

 

Scheme 19 
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Scheme 20 shows our efforts to connect the succinyl anthranilate ester moiety to the 

ABE tricyclic ring system. Treatment of enol ether 38 with tetrabutylammonium fluoride at 

room temperature for 12 h, gave only E-isomer alcohol 64. The Z-isomer 38b did not react 

under these conditions. Coupling with commercially available 2-nitrobenzoyl chloride (65) 

afforded compound 66 in a 76% yield. The succinyl anthranilate ester moiety could easily be 

achieved from the nitro group based on several known procedures.
19, 20
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Scheme 20 

 

 

Based on all of the experiments, two pathways could be tried in the future (Scheme 

21). According to pathway A, non-acidic oxidizing reagents such as osmium tetroxide and 

dimethyldioxirane, should give α-face products 67. MCPBA is an acid and may have some 

interaction with the amine group to give β-face oxidation products. By pathway B, an amide 

group could be introduced, instead of an amine group. The amide may make the β-face less 

hindered, which would provide β-face addition products 68 with nucleophiles like vinyl 

lithium, or give the aldehyde with an ‘S’ configuration by direct hydrolysis of the enol ether 

56. 
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 Scheme 21  
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In conclusion, an advanced tricyclic intermediate fragment of methyllycaconitine (1) 

was synthesized efficiently. The carbon extension at the inert bridge carbonyl group was 

realized by reducing the neighboring ester group. All experiments have demonstrated that the 

right stereochemistry at the bridge carbon is the key point for F ring formation.  

 

Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers and used 

without purification. Tetrahydrofuran and diethyl ether were distilled from sodium and 

benzophenone. Dichloromethane, benzene and diisopropylamine were distilled over calcium 

hydride. All experiments were performed under an argon atmosphere, unless otherwise noted. 

Organic extracts were dried over anhydrous magnesium sulfate. Infrared spectra were 

obtained on a Perkin-Elmer model 1320 spectrophotometer. Nuclear magnetic resonance 
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experiments were performed with either a Varian 300 MHz or Bruker 400 MHz instrument. 

All chemical shifts are reported relative to CDCl3 (7.27 ppm for 
1
H and 77.23 ppm for 

13
C), 

unless otherwise noted. Coupling constants (J) are reported in Hz with abbreviations: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectra were 

recorded on a Kratos model MS-50 spectrometer. Standard grade silica gel (60 Å, 32-63 µm) 

was used for flash column chromatography. 

 

 

Compound 28 

To a suspension of the compound 15 (0.719 g, 2.45 mmol) in 22 mL of ethylene 

glycol, copper chloride dihydrate (0.042 g, 0.245 mmol) was added at room temperature. The 

resulting mixture was warmed to 90 
o
C and stirred for 1 h. The color turned from greenish to 

light yellow. The reaction was quenched by the addition of brine solution. The product was 

extracted twice with diethyl ether and the combined organic layers were washed with brine. 

Evaporation of the solvent, followed by column chromatography of the residue using 1:3 

ethyl acetate: hexanes, gave compound 28 (726 mg, 88%) as a clear oil; 
1
H NMR (400 MHz, 

CDCl3) 3.91-3.94 (m, 4H), 3.75 (s, 3H), 3.36-3.42 (m, 2H), 2.94-3.05(m, 2H), 2.46-2.60 (m, 

3H), 2.07-2.27 (m, 2H), 1.69-2.02 (m, 4H), 1.43-1.56 (m, 3H), 1.11-1.17(m, 4H); 
13

C NMR 

(100 MHz, CDCl3) 213.2, 171.8, 109.5, 65.8, 64.4, 64.2, 59.2, 55.4, 52.2, 50.5, 46.7, 43.8, 

38.8, 31.2, 30.4, 28.7, 21.1, 13.4; MS electrospray (m/z): 337. 
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Compound 31 

To a solution of lithium aluminum hydride (0.094 g, 2.48 mmol) in 8 mL of THF was 

added ester 28 (0.42 g, 1.24 mmol) in 8 mL of THF dropwise by canulation, The resulting 

mixture was allowed to stir at room temperature for 10 min. Then 0.094 mL of water, 0.094 

mL of 15% NaOH solution and 0.283 mL of water were added in sequence to quench the 

reaction. After 30 min at rt, the precipitate was filtered by Celite and washed by 30 mL of 

EtOAc. The organic layer was concentrated, and the product was purified by flash column 

chromatography to afford diol 31 (0.4 g, 95%) as a clear oil; 
1
H NMR (400 MHz, CDCl3) 

3.91-3.94 (m, 4H), 3.79 (s, 1H), 3.42-3.52 (m, 3H), 2.97-3.00(d, J=11.6 Hz, 1H), 2.83-2.89 

(dd, J = 12.8, 4.4 Hz, 1H), 2.59 (s, 1H), 2.39-2.53 (m, 3H), 2.26-2.29 (d, J = 11.62 Hz, 1H), 

2.02-2.17 (m, 2H), 1.84-1.90 (m, 1H), 1.57-1.71 (m, 3H), 1.31-1.38 (m, 3H), 1.09-1.25 (m, 

2H), 1.00-1.04 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) 110.6, 83.0, 71.4, 64.2, 63.9, 

59.5, 49.9, 46.8, 39.8, 39.7, 37.6, 34.7, 34.2, 32.6, 30.4, 19.9, 12.2; MS electrospray (m/z): 

311. 

 

 

Compound 32 
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To a solution of diol 31 (0.311 g, 1.00 mmol) in 10 mL of DMF was added tert-

butyldimethylsilyl chloride (0.15g, 1.00 mmol) and imidazole (0.10 g, 1.50 mmol). The 

resulting mixture was allowed to stir at room temperature for 12 h. Ten mL of water was 

added to quench the reaction. The product was extracted twice by ethyl acetate and the 

combined organic layers were washed with brine. The organic layer was concentrated, and 

the product was purified by flash column chromatography to afford compound 32 (0.39 g, 

92%) as a clear oil; 
1
H NMR (400 MHz, CDCl3) 3.91-3.94 (m, 4H), 3.79 (s, 1H), 3.42-3.52 

(m, 3H), 2.97-3.00(d, J = 11.6 Hz, 1H), 2.83-2.89 (dd, J = 12.8, 4.4 Hz, 1H), 2.59 (s, 1H), 

2.39-2.53 (m, 3H), 2.26-2.29 (d, J = 11.62 Hz, 1H), 2.02-2.17 (m, 2H), 1.84-1.90 (m, 1H), 

1.57-1.71 (m, 3H), 1.31-1.38 (m, 3H), 1.09-1.25 (m, 2H), 1.00-1.04 (t, J = 7.2 Hz, 3H); 
13

C 

NMR (100 MHz, CDCl3) 110.6, 83.0, 71.4, 64.2, 63.9, 59.5, 49.9, 46.8, 39.8, 39.7, 37.6, 34.7, 

34.2, 32.6, 30.4, 19.9, 12.2; MS electrospray (m/z): 311. 

 

N
O

O
TBSO

O

 

Compound 33 

To a dry round bottom flask, oxalyl chloride (0.07 mL, 0.80 mmol) was added to 10 

mL of CH2Cl2. To this solution, 0.113 mL of DMSO (1.6 mmol) was slowly added at -78 
o
C. 

After 5 min at -78 
o
C, the alcohol 32 in 10 mL of CH2Cl2 was added, followed by 0.56 mL of 

Et3N (4.0 mmol). After 30 min at -78 
o
C, the reaction mixture was poured into a 10 mL 

mixture of saturated NaHCO3 and saturated NaCl solution. The product was extracted twice 
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by CH2Cl2 and the combined organic layers were washed with brine. Evaporation of the 

solvent, followed by column chromatography of the residue, gave compound 33 as clear oil; 

1
H NMR (400 MHz, CDCl3) 3.88-3.95 (m, 4H), 3.51-3.66 (dd, J = 47.6, 10.0 Hz, 2H), 3.34-

3.38 (dd, J = 12.8, 3.6 Hz, 1H), 3.10-3.13 (d, J = 11.6 Hz, 1H), 2.97-3.07 (m, 1H), 2.66-2.70 

(dd, J = 11.6, 2.4 Hz, 1H), 2.43-2.58 (m, 2H), 2.45-2.48 (m, 1H), 2.05-2.06 (m, 1H), 1.93-

1.97 (m, 1H), 1.83-1.90 (m, 1H), 1.60-1.71 (m, 3H), 1.41-1.55 (m, 2H), 1.28-1.34 (t, J = 12.8 

Hz, 1H), 1.10-1.17 (m, 4H), 0.88-0.90 (m, 9H), 0.03-0.04 (m, 6H); 
13

C NMR (100 MHz, 

CDCl3) 218.8, 109.8, 66.4, 65.7, 64.3, 64.1, 56.1, 51.2, 50.7, 46.8, 44.7, 40.0, 31.3, 30.3, 

28.5, 25.9, 21.3, 18.3, 13.5, -5.5. MS electrospray (m/z): 423. 

 

 

Compound 34 

First, 0.093 mL of n-BuLi in THF (2.5 M, 0.233 mmol) was added dropwise under 

argon to 0.033 mL of trimethylsilyl acetylene in 1 mL of THF (0.233 mmol) at 0 
o
C. After 1 

h at 0 
o
C, compound 33 (0.033 g, 0.078 mmol) in 1 mL of THF was added by canula.  After 

another 30 min at 0 
o
C, the reaction was quenched by the addition of 10 mL of saturated 

aqueous NH4Cl solution. The product was extracted twice with ethyl acetate and the 

combined organic layers were washed with brine. Evaporation of the solvent, followed by 

column chromatography of the residue, gave compound 34 (39 mg, 96%) as a clear oil; 
1
H 
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NMR (400 MHz, CDCl3) 5.18 (s, 1H), 4.00-4.02 (d, J = 10.0 Hz, 1H), 3.91 (s, 4H), 3.22-3.26 

(m, 2H), 3.04-3.09 (dd, J = 12.8, 4.4 Hz, 1H), 2.68-2.74 (m, 1H), 2.16-2.57 (m, 6H), 1.77-

1.85 (m, 1H), 1.44-1.58 (m, 3H), 1.20-1.36 (m, 4H), 1.01-1.05 (t, J = 7.2 Hz, 3H), 0.88 (s, 

9H), 0.16 (s, 9H), 0.05-0.08 (d, J = 11.2 Hz, 6H); 
13

C NMR (100 MHz, CDCl3) 111.2, 107.6, 

90.9, 80.9, 71.7, 64.1, 64.0, 61.3, 49.9, 47.0, 41.3, 39.8, 39.2, 33.8, 32.6, 32.4, 29.0, 25.9, 

20.9, 18.2, 13.2, 0.1, -5.7, -5.8; MS electrospray (m/z): 521. 

 

N
O

O

OH

TBSO

 

Compound 35 

To the solution of tetravinyltin (0.077 mL, 0.425 mmol) in 1 mL of THF, 0.256 mL 

of n-BuLi (2.5 M, 0.639 mmol) in THF was added dropwise under argon at -78 
o
C. After 30 

min at -78 
o
C, compound 46 (0.06 g, 0.142 mmol) in 1 mL of THF was added to this mixture 

and stirred for another 30 min at -78 
o
C. The reaction was quenched by the addition of 

saturated aqueous NH4Cl solution at -78 
o
C. The product was extracted twice with ethyl 

acetate and the combined organic layers were washed with brine. Evaporation of the solvent, 

followed by column chromatography of the residue, gave compound 35 (58 mg, 91%) as a 

clear oil; 
1
H NMR (400 MHz, CDCl3) 6.23-6.30 (dd, J = 16.8, 10.4 Hz, 1H), 5.55-5.60 (dd, J 

= 16.8, 2.8 Hz, 1H), 5.26-5.30 (dd, J = 10.4, 2.8 Hz, 1H), 4.43 (bs, 1H), 3.85-3.92 (dd, J = 

16.8, 13.6 Hz, 4H), 3.52-3.55 (d, J = 10 Hz, 1H), 3.33-3.36 (m, 1H), 2.95-3.07 (m, 2H), 2.54-

2.94 (m, 3H), 2.21-2.40 (m, 2H), 2.13-2.15 (d, J = 11.2 Hz, 1H), 1.40-1.70 (m, 4H), 1.20-
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1.34 (m, 4H), 0.99-1.09 (m, 4H), 0.84 (s, 9H), -0.03-0.01(d, J = 4.4 Hz, 6H); 
13

C NMR (100 

MHz, CDCl3) 139.1, 116.8, 111.5, 81.6, 71.1, 64.0, 63.9, 63.2, 52.1, 47.1, 41.3, 39.2, 38.8, 

32.7, 32.1, 31.5, 29.7, 25.8, 20.9, 18.1, 13.3, -5.79, -5.84; MS electrospray (m/z): 451. 

 

N
O

O

OH

MeO

 

Compound 37 

To a solution of compound 35 (0.451 g, 1.0 mmol) in 10 mL of DMF was added NaH 

(0.048g, 1.2 mmol) and methyl iodide (0.14 g, 1.0 mmol) at room temperature. The resulting 

mixture was allowed to stir at room temperature for 12 h. Ten mL of water was added to 

quench the reaction. The product was extracted twice by ethyl acetate and the combined 

organic layers were washed with brine. The organic layer was concentrated, and the product 

was purified by flash column chromatography to afford compound 37 (0.14 g, 42%) as a 

clear crystalline solid; 
1
H NMR (400 MHz, CDCl3) 6.29-6.36 (q, J = 6.4 Hz, 1H), 5.57-5.62 

(dd, J = 19.2, 2.4 Hz, 1H), 5.30-5.34 (dd, J = 10.4, 2.4 Hz, 1H), 4.26 (bs, 1H), 3.88-3.96 (dd, 

J = 16.4, 13.2 Hz, 4H), 3.30-3.36 (m, 2H), 3.22 (s, 3H), 2.95-3.02 (m, 2H), 2.74-2.83 (m, 

1H), 2.54-2.64 (m, 2H), 2.37-2.45 (m, 1H), 2.22-2.30 (m, 2H), 1.60-1.73 (m, 2H), 1.25-1.57 

(m, 7H), 1.04-1.10 (m, 3H); 
13

C NMR (100 MHz, CDCl3) 139.3, 116.7, 111.3, 81.4, 80.7, 

64.1, 63.9, 63.1, 59.2, 52.2, 47.0, 41.9, 39.2, 38.7, 32.6, 32.2, 31.8, 29.7, 20.9, 13.2; MS 

electrospray (m/z): 351. 
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Compound 38 

To a solution of diphenyl(methoxymethyl)phosphine oxide (1.17g, 4.75 mmol) in 35 

mL of THF, 1.95 mL of n-BuLi (2.35 M, 4.75 mmol) in THF was added dropwise under 

argon at -78 
o
C. After 20 min at -78 

o
C, a solution of ketone 33 (0.67 g, 1.58 mmol) in 10 mL 

of THF was added. The dry ice/acetone bath was removed and the reaction mixture was 

allowed to stir at rt for 3 h. The reaction was quenched by the addition of 10 mL of saturated 

aqueous NH4Cl solution. The product was extracted twice with ethyl acetate and the 

combined organic layers were washed with brine. Evaporation of the solvent, followed by 

column chromatography of the residue, gave compound 38 as two isomers (613 mg, 86%, 

E/Z=7:1); 
1
H NMR (400 MHz, CDCl3) 5.69 (s, 1H), 3.85 (s, 4H), 3.41 (s, 3H), 3.31-3.36 (m, 

2H), 2.72-2.75 (m, 2H), 2.45-2.48 (d, J = 10.8 Hz, 1H), 2.20-2.40 (m, 4H), 1.64-1.85 (m, 2H), 

1.16-1.58 (m, 8H), 0.93-0.98 (m, 3H), 0.90 (s, 9H), 0.06 (s, 6H). 

 

Compound 45 

To a solution of compound 38 (0.451g, 1.00 mmol) in 15 mL of CH2Cl2, 0.115 mL of 

trifluoroacetic acid (1.50 mmol) and MCPBA (268 mg, 1.20 mmol, 77%) were added to the 

mixture at 0 
o
C. After 1 h at rt, 20 mL of saturated aqueous sodium thiosulfate was added to 
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quench the reaction.  The product was extracted twice with CH2Cl2 and the combined organic 

layers were washed with brine. After evaporation of the solvent, the residue was redissolved 

in 10 mL of THF and 2.5 mL of 4 N HCl was added to the reaction mixture. After 2 h at rt, 

20 mL of water was added to quench the reaction. The product was extracted twice with 

ethyl acetate and the combined organic layers were washed with saturated NaHCO3 solution 

and brine. Evaporation of the solvent, followed by column chromatography of the residue, 

gave compound 45 as a clear oil (212 mg, 72%); 
1
H NMR (400 MHz, CDCl3) 5.55 (s, 1H), 

4.77 (s, 1H), 3.82-3.85 (d, J = 9.2 Hz, 1H), 3.26-3.28 (d, J = 9.2 Hz, 1H), 3.00-3.03 (m, 1H), 

2.70-2.82 (m, 2H), 2.27-2.46 (m, 4H), 1.86-1.91 (m, 1H), 1.35-1.70 (m, 10H), 0.98-1.06 (t, J 

= 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) 97.2, 96.8, 84.8, 74.0, 61.5, 51.4, 46.9, 45.9, 

34.1, 33.5, 33.4, 32.3, 32.2, 29.6, 20.9, 13.3; MS electrospray (m/z): 295. 

 

 

Compound 54 

To a solution of diol 31 (0.311 g, 1.00 mmol) in 10 mL of DMF was added NaH 

(0.044g, 1.10 mmol) and benzyl bromide (0.18 g, 1.05 mmol) at 0 
o
C. The resulting mixture 

was allowed to stir at 0 
o
C for 3 h. Ten mL of water was added to quench the reaction. The 

product was extracted twice by ethyl acetate and the combined organic layers were washed 

with brine. The product was purified by flash column chromatography to afford compound 

54 as a clear oil in 86% yield: 
1
H NMR (400 MHz, CDCl3); 7.29-7.38 (m, 5H), 4.44-4.53 (dd, 
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J = 26.8, 12.0 Hz, 2H), 3.93 (s, 4H), 3.70 (s, 1H), 3.54 (s, 1H), 3.30-3.35 (m, 2H), 2.94-3.03 

(m, 2H), 2.69-2.72 (m, 1H), 2.52-2.57 (m, 1H), 2.23-2.43 (m, 4H), 1.43-1.69 (m, 6H), 1.23-

1.34 (m, 3H), 1.03-1.06 (t, J = 7.2 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) 137.8, 128.7, 128.6, 

128.0, 127.8, 126.9, 111.4, 82.7, 78.9, 74.0, 64.4, 64.1, 60.4, 57.0, 49.3, 47.4, 41.6, 40.1, 37.2, 

36.7, 34.9, 33.0, 28.6, 21.5, 13.4; MS electrospray (m/z): 401. 

 

 

Compound 55 

The product 55 was obtained as clear oil in 75% yield by a procedure similar to that 

used to prepare compound 33; 
1
H NMR (400 MHz, CDCl3) 7.27-7.34 (m, 5H), 4.48-4.55 (dd, 

J = 16.0, 12.4 Hz, 2H), 3.88-3.95 (m, 4H), 3.34-3.50 (m, 3H), 3.15-3.18 (d, J = 11.6 Hz, 1H), 

2.98-3.08 (m, 1H), 2.74-2.77 (dd, J = 12.0, 2.4 Hz, 1H), 2.35-2.59 (m, 3H), 2.05-2.10 (m, 

1H), 1.83-1.98 (m, 2H), 1.64-1.73 (m, 3H), 1.42-1.54(m, 2H), 1.29-1.35 (t, J = 12.8 Hz, 1H), 

1.09-1.17 (m, 4H); 
13

C NMR (100 MHz, CDCl3) 218.1, 138.7, 128.3, 127.5, 109.8, 73.6, 

73.5, 65.6, 64.3, 64.1, 56.4, 50.64, 50.61, 46.8, 44.5, 40.2, 31.3, 30.4, 28.5, 21.3, 13.5; MS 

electrospray (m/z): 399. 
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Compound 56 

The product 56 was obtained as clear oil in 78% yield by a procedure similar to that 

used to prepare compound 38; 
1
H NMR (400 MHz, CDCl3, E/Z=1.2:1) 7.26-7.39 (m, 10 H), 

5.85 (s, 1H), 5.84 (s, 1H), 4.49-4.57 (m, 4H), 3.68-3.83 (dd, J = 12.8, 9.2 Hz, 2H), 3.52 (s, 

3H), 3.51 (s, 3H), 3.27-3.38 (dd, J = 33.6, 9.2 Hz, 2H), 3.02-3.06 (m, 1H), 2.74-2.93 (m, 6h), 

2.66-2.69 (d, J = 12.0 Hz, 2H), 2.51-2.63 (m, 6H), 2.13-2.42 (m, 10H), 1.94-2.08 (m, 2H), 

1.83-1.89 (m, 1H), 1.32-1.74 (m, 12H), 1.02-1.07 (m, 6H); 
13

C NMR (100 MHz, CDCl3) 

214.5, 212.8, 141.1, 139.8, 139.4, 138.5, 128.4, 128.38, 128.30, 127.63, 127.60, 127.5, 

127.24, 127.20, 118.1, 117.6, 76.8, 73.4, 73.2, 66.6, 67.3, 59.9, 60.0, 54.5, 54.7, 47.29, 47.31, 

44.5, 42.3, 42.4, 41.9, 40.3, 40.2, 40.0, 39.6, 38.1, 38.0, 36.6, 35.4, 35.2, 34.6, 21.69, 21.67, 

13.2, 13.1; MS electrospray (m/z): 427. 

 

 

Compound 57 

To a solution of compound 56 (0.427 g, 1.00 mmol) in 6 mL of acetic acid was added 

hydriodic acid (1.12 mL, 5.00 mmol, 57%) at 0 
o
C. The resulting mixture was allowed to stir 

at 0 
o
C for 30 min. Ten mL of water was added to quench the reaction. The product was 

extracted twice by ethyl acetate and the combined organic layers were washed with saturated 

aqueous NaHCO3 solution. The product was purified by flash column chromatography to 
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afford compound 57 as a clear oil in 56% yield; 
1
H NMR (400 MHz, CDCl3) 10.10-10.11 (m, 

1H),  7.28-7.38 (m, 5H), 4.40-4.50 (dd, J = 28.0, 12.0 Hz, 2H), 3.15-3.26 (dd, J = 36.0, 9.2 

Hz, 2H), 3.07-3.11 (dd, J = 12.0, 4.8 Hz, 1H), 2.87-3.10 (m, 1H), 2.75-2.76 (d, J = 5.2 Hz, 

1H), 2.54-2.64 (m, 3H), 2.38-2.44 (m, 2H), 2.12-2.34 (m, 4H), 1.37-1.87 (m, 6H), 1.02-1.08 

(m, 3H); 
13

C NMR (100 MHz, CDCl3) 211.4, 205.7, 138.0, 128.4, 127.7, 127.6, 73.5, 66.6, 

62.2, 54.9, 51.9, 47.1, 39.2, 37.3, 36.7, 35.7, 35.4, 33.7, 29.8, 21.1, 13.0; MS electrospray 

(m/z): 369. 

 

 

Compound 59 

To a solution of compound 56 (0.427g, 1.0 mmol) in 15 mL of CH2Cl2, 0.115 mL of 

trifluoroacetic acid (1.5 mmol) and MCPBA (268 mg, 1.2 mmol, 77%) were added to the 

mixture at 0 
o
C. After 1 h at rt, 20 mL of saturated sodium thiosulfate was added to quench 

the reaction.  The product was extracted twice with CH2Cl2 and the combined organic layers 

were washed with brine. After evaporation of the solvent, the residue was redissolved in 10 

mL of THF and 2.5 mL of 4 N HCl was added to the reaction mixture. After 2 h at rt, 20 mL 

of water was added to quench the reaction.  The product was extracted twice with ethyl 

acetate and the combined organic layers were washed with saturated aqueous NaHCO3 

solution and brine. Evaporation of the solvent, followed by column chromatography of the 
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residue, gave compound 59 as a clear oil (300 mg, 69%); 
1
H NMR (400 MHz, CDCl3) 10.22 

(s, 1H), 7.22-7.35 (m, 5H), 4.23-4.36 (dd, J = 38.8, 12.0 Hz, 2H), 3.90-3.94 (m, 4H), 3.37-

3.39 (d, J = 8.8 Hz, 1H), 3.00-3.03 (m, 2H), 2.84-2.86 (d, J = 8.8 Hz, 1H), 2.71-2.74 (m, 1H), 

2.34-2.60 (m, 4H), 2.20-2.23 (d, J = 11.2 Hz, 1H),  2.02-2.11 (m, 1H), 1.77-1.85 (m, 1H), 

1.52-1.71 (m, 5H), 1.25-1.48 (m, 4H), 1.04-1.08 (t, J = 7.6 Hz, 1H); MS electrospray (m/z): 

429. 

  

 

Compound 66 

To a solution of compound 64 (0.337g, 1.00 mmol) in 15 mL of methylene chloride, 

1 mL of pyridine and 2-nitrobenzoyl chloride (65) (0.16 mL, 1.2 mmol) were added to the 

mixture at 0 
o
C. After 1 h at 0 

o
C, 20 mL of saturated aqueous NH4Cl solution was added to 

quench the reaction.  The product was extracted twice with methylene chloride and the 

combined organic layers were washed with brine. Evaporation of the solvent, followed by 

column chromatography of the residue, gave compound 59 as a clear oil (369 mg, 76%); 
1
H 

NMR (400 MHz, CDCl3) 7.63-7.89 (m, 4H), 5.71 (s, 1H), 4.12-4.22 (m, 2H), 3.91 (s, 4H), 

3.51 (s, 3H), 2.80-3.01 (m, 2H), 2.26-2.57 (m, 4H), 1.77-1.84 (m, 2H), 1.22-1.66 (m, 9H), 

1.00-1.04 (t, J = 7.2 Hz, 3H); MS electrospray (m/z): 486. 
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PPENDIX. X-RAY STRUCTURE OF COMPOUND 37 
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GENERAL CONCLUSIONS 

 

In this dissertation, syntheses of some heteroaromatic compounds have been studied. 

During this process, novel synthetic methodologies have been developed. 

Chapter 1 describes an efficient synthesis of 2-substituted and 2,3-disubstituted 

indoles by a two-step approach in one pot involving imine formation and six-electron ring 

closure, followed by a 1,5-hydrogen shift. These reactions proceed under very mild 

conditions and remarkably short reaction times. A wide range of aryl or α,β-unsaturated 

aldehydes undergo this process in excellent yield. The adduct prepared from indole-4-

carboxaldehyde is an advanced intermediate in the synthesis of arcyriacyanin A. The adduct 

prepared from 4-oxo-3,4-dihydroquinazoline-2-carboxaldehyde is an advanced intermediate 

in the synthesis of several rutaecarpine analogs.  

Chapter 2 describes a new, efficient and straightforward formal total synthesis of 

neocryptolepine (2) and isocryptolepin (3), employing the same intermediate 8, and an 

intramolecular Wittig reaction, followed by an aza-Wittig reaction in excellent yield.   

Chapter 3 describes two synthetic routes to the highly functionalized bicyclic core 

skeleton of salvorin A. A Sonogashira coupling of an alkyne intermediate with an iodoalkene 

afforded some advanced intermediates with an A ring and a C ring. The second route using 

an intermolecular Michael addition and an intramolecular SN2 reaction form the important B 

ring. Lactonization could give the tricyclic core structure of salvorin A (1).  

Chapter 4 describes a direct synthesis of a highly functionalized tricyclic intermediate 

fragment of methyllycaconitine (1). The carbon extension at the inert bridge carbonyl group 



www.manaraa.com

122 

 

was realized by reducing the neighboring ester group. All of the experiments demonstrate 

that the right stereochemistry at the bridge carbon is the key isomer for F ring formation.  
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